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Can Surface Adhesion Drive Cell Rearrangement?
Part II: A Geometrical Model
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We present a new flexible, geometrical and dynamical model for cell rearrangement.
It includes free boundaries between the cells and the external medium, to account
naturally for surface tension effects. The forces deriving from intercellular adhesion
and membrane elasticity act on points representing polygonal cells, according to an
extended Dirichlet construction. The model simulates the aggregation and rounding
of an homogeneous cell collection and short-distance cel! movements.

We then examine the behaviors of a mixture of two cell types: aggregate engulf-
ment, cell dispersal, total and partial cell-sorting, and more exotic patterns, such as
“position reversal” and the checkerboard. Including free boundaries causes long-
distance cell movements, suggesting that celi surface adhesion can drive passive
biological cells.

1. Introduction

In a wide range of vertebrates and invertebrates, cells can move and rearrange, for
example during embryogenesis, healing and in vitro reaggregation. The mechanism of
cell mobility is still debated in developmental biology (for a review, see Keller, 1987,
Fristrom, 1988). Movement requires both a driving force and a guiding mechanism,
Surface adhesion is known to guide cells in migration on substrates (Carter, 1967),
cancer metastasis (Jouanneau et al, 1991; Takeichi, 1991), the migration of the optic
nerve axon (Fraser, 1985), and cell-sorting (see Armstrong, 1989 for a review). We
suggest that cell-cell surface adhesion can be a driving force as well.

We have shown elsewhere (Graner, 1993) how cell—cell adhesion can drive cells
lacking autonomous active motility. We can attribute a potential energy to a cellular
pattern if adhesion energy is proportional to the contact area between two cells. The
local energy gradient drives cells, as long as microscopic thermal fluctuations allow
adhesive links to break and re-establish. The adhesive driving force arises from
inhomogeneities, for example from boundaries with other cell types, the culture
medium, the extracellular matrix or the substrate. Cells can deterministically change
shape and position over distances comparable to the average cell radius R, without
overcoming an energy barrier; thus, they need neither to have intrinsic motility, nor
to randomly explore next nearest neighbor cells. Moreover, a collection of two

1 Present address: Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond,
75005 Paris, France.
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randomly mixed cell types can sort to re-establish homogeneous tissues. Gustafson
& Wolpert (1963) have compared adhesion molecuies to the teeth of a zipper which
hold together two surfaces, but no “zipper fastener” other than nanometer-range
thermal fluctuation is needed to close the zipper and bring cell membranes into
contact.

In this paper we simulate surface-energy driven cellular patterns. No single model
is best (for review, see Glazier et al,, 1993, in press). Early models of point-like cells
rearranging on a lattice (Goel & Leith, 1970; Goel et al., 1970; Leith & Goel, 1971;
Gordon et al., 1972; Antonelli et al., 1973) turned insufficient (Steinberg, 1975). Later
improvements take into account the geometrical/topological characteristics of the
cellular pattern (Rogers & Sampson, 1977; Goel & Rogers, 1978; Rogers & Goel,
1978; Matela & Fletterick, 1979, 1980), forces between cells (Greenspan, 1981), or
both (Table 1). But up to now, none had been able to describe consistently
homogeneous and heterogeneous, two- (2D) and three-dimensional (3D), loose and
compact aggregates. Section 2 presents a flexible model which naturally treats cell
free boundaries and intercellular gaps in long-distance cell rearrangement. It can also
describe short-range rearrangement, membrane elasticity, cell compressibility and
mternal pressure. It treats different types of force, particularly cell adhesion and
differential adhesion, and can include gravity, centrifugation, and long-range cell
interaction, for example, chemotaxis. Section 3 uses this model and examines if
assuming that the adhesion energy is proportional to the cell-cell contact area yields
a good description of biological cell rearrangement. Section 4 discusses the biological
relevance of the simulations.

2. How Can We Model Cell Movement?

A complete description of an aggregate needs an infinity of position parameters
and is not possible in a model. What parameters are necessary, and which negligible,
in a geometrical model? Cell position and shape must vary smoothly to account for
the continuous decrease or increase of contact areas. However, neighbor exchange is
a topological singularity via a transient five-cell vertex (four cells in two dimensions,
Fig. 1). Any model which does not describe such geometrical features misrepresents

{a) (b) (e)

Four-cell vertex

F1G. 1. Sketch of neighbor exchange in two dimensions (redrawn from Graner, 1993). (a) Cells 2 and 3
are separating, 1 and 4 approach. The membrane A,, shortens, the vertices 1.2.3 and 2.3.4 approach.
(b) By continuity, the vertices 1.2.3 and 2.3.4 fuse to form a transient four-cell vertex; the membrane A,
disappears. (¢) The cells still move continuously: 2 and 3 separate, 1 and 4 touch. A new membrane A, ,
and two new vertices 1.2.4 and 1.3.4 appear, replacing 4,,, 1.2.3 and 2.3.4.
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the evolution. Free Dirichlet domains are a simple method that realistically
describes, with a few parameters, an evolution limited by the mobility of the centers
where vertex positions relax quickly.

2.1, ORDINARY DIRICHLET DOMAINS

A Dirichlet domain is labeled by a center and is defined as the subset of the space
which is closer to it than to all other centers. Equivalently, the boundary between
two domains is the mediatrix planc between their centers. Domains are convex and
cover the space. They are also known as Voronoi polygons, Wigner-Seitz cells,
Meijering cells, Thiessen polygons, and are encountered in a variety of fields in
physics and biology, when 2D or 3D patterns result from either growth initiated at
centers, or campetition between them (for reviews, see Weaire & Rivier, 1984; Frost,
1991). They also approximate well biological cell shapes, particularly for equilibrated
epithelial cells (Honda, 1978), even though the Dirichlet center is neither the
barycenter of the cell, nor its biological nucleus.

2.1.1. Dirichlet domains: advantages

A Dirichlet pattern of N cells is completely specified by the N positions F; of the
centers i. Each center is conserved during the evolution. It moves continuously in
real space, not on a lattice. It experiences no singularities, even during neighbor
rearrangement. The position of the centers automatically deletes and creates
membranes and vertices. Cell areas and volumes can be calculated analytically as a
simple function of the relative distances between centers, so that surface energies,
compressions and elastic deformations can be computed using a minimal! number of
position parameters (Sulsky et al., 1984). We can easily describe the effects of global
forces and long distance movements, including global effects of differential adhesion,
such as surface tensions, which arise from interactions between neighbors.

However, we do not neglect cell membrane topology (Matela & Fletterick, 1979,
1980). We can introduce forces acting on the membranes, such as pressure or
adhesion. Geometrically, simulated shapes are flexible; hence, the agreement with
biological local rearrangement, even in a non-equilibrated epithelium resuiting from
the addition or removal of a cell, by cell division or destruction (Honda, 1978, 1983).

2.1.2. Dirichlet domains: cautions

Arbitrary Dirichlet tilings cannot represent all biological cell aggregates. Care is
needed. If the center positions are chosen at random, then the Dirichlet tiling has a
broad distribution of cell volumes, and contact angles at vertices, with excessively
irregular shapes. The cell volume distribution of model and biology must agree; if the
cells to be represented have approximately the same size, then the centers must have
initially a minimal separation (excluded volume) to produce an almost uniform
density, internal contact angles at vertices close to 109-47° for identical cells (or 120°
in two dimensions) and a realistic distribution of the number of faces or edges per cell
(Glazier, 1989).
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Honda (1983) started from a real cell distribution, so that the domain volumes and
shapes were realistic. He studied the local relaxation far from the epithelium
boundaries, but did not treat the boundaries, which are essential to understand
adhesion-driven processes (Graner, 1993). In particular, surface tensions arising at
free interfaces controls the demixion of intermingled cells of two different types. On
the opposite, constrained boundary conditions distort demixion, either by pinning or
increasing the mobility. Closed or periodic boundary conditions fix externally the
average domains size; moreover, they regard a small portion of an aggregate as
infinite.

Slow vertex rearrangement can be a limiting factor for evolution; for example, for
an impermeable epithelium whose tight or septate junctions must adapt to new
configurations (Keller & Trinkaus, 1987; Fristrom, 1988). If so, a vertex dynamics
model is more appropriate. Such models allow flexible cell shapes and realistic
representations, as in the simulations of Fundulus epiboly (Weliky & Oster, 1990).
However, dynamics of non-conserved objects, such as membranes or vertices, need a
set of creation and destruction rules, natural for neighbor exchange, but less easy to
define at intercellular gaps or free boundaries (Weliky et al., 1991).

2.2. THE MODEL

2.2.1, Free Dirichlet domains

We define “free Dirichlet domains” to include two features of biological cells:
individual boundaries and characteristic size. As for ordinary Dirichlet domains, we
denote each cell by a center. The cell is the subset of the space which is nearer to its
center than to any other, but with the additional constraint that the distance from
the center must be less than R [Fig. 2(a), 16].

0.9 o0-9¢

FiG. 2. Free Dirichlet domains in 2D or 3D are labeled by their “centers” (dots). Each point of one
domain is closer to its center than a distance R, than to any other center. A free membrane is a spherical
cap of radius R, a contact surface is the mediatrix plane between two centers. (a) At each time-step the
contact lengths are calculated as a function of the center positions. The surface energy is computed, along
with its spatial derivatives (Appendix A). Segments indicate the force acting on each cell, ie. the
displacement during the next time step. All cells are then moved simuitaneously and a new iteration starts.
(b) Equilibrium state, after ~1 min (0-055z,). An isolated cell does not move. The competition between
surface adhesion and membrane eclasticity determines the final contact lengths for two and three cells. In
this picture, as in Figs 5-15, dark {d) cells are more cohesive than light (1) cells, e,y <e,. Here, surface
energies are the same as in the cell-sorting case (Figs 10~12) egy=eyp=0; ey =—12E,; ey4=—5E,:
ey = —2E,, Corresponding surface tensions are Yoy = 6E,, yq=2E,, Ving= Eo. E, s a typical energy scale
associated [eqn (8)] with a time scale 1, of the order 10° sec, which is used above and in the following
captions. The number of time-steps has no physical significance since we use an adaptative time discretization
procedure defined in Appendix C. Cell rigidity is determined to constrain the cell size without affecting
position relaxation, see Appendix B.
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F1G. 3. Variants of Dirichlet domains. {a) Definitions of Dirichlet domains can be slightly altered for two
cell types with different sizes R, R,. Here, R;-sinf, = R;-sin8,; and R,-cosf, +R, cosf, =r, the
distance between the two centers. These two conditions uniquely fix the positions of the membranes and
ensure that three contiguous membranes actually meet, whatever the configaration. {b) If membrane

shapes equilibrate more quickly than the cell internal pressure, they are spherical caps obeying Laplace’s
law,

If two centers are closer than 2R, their mediatrix plane is the contact surface
between their cells. But if two neighboring centers are further than 2R, each cell has a
frece membrane, a spherical cap with radius R. R is a typical length scale, not the
diameter of the domain, but an upper bound. An isolated domain is spherical, which
is realistic for an isolated suspended cell. Each domain bound to a neighbor is
convex and contained in a sphere of radius R; its volume and area are always smaller
than 4zR*/3 and 4nR2. Equivalent domains in two dimensions are defined the same
way. Such free domains can be defined with any boundary conditions, free or
constrained. For fixed or periodic boundary conditions, if the average size allotted to
each cell is much smaller than R, then no cell has any free membrane and the pattern
is strictly equivalent to a normal Dirichlet tiling.

The essential feature of our model is this finite length scale, other details are not
crucial. For instance, if the difference of hydrostatic/osmotic pressure between cells
does not equilibrate by diffusion through the membrane more quickly than cell
shapes do, then the membranes between cells can be described by spherical caps to
include pressure differences [Fig. 3(b)]. Free membranes with constant R, and plane
contact surfaces, occur if pressure differences among the cells equilibrate faster than
membrane shapes. The model is also realistic for cells tightly packed under either
extracellular or cytoskeletal interaction.

2.2.2. Discussion of the representation

Free Dirichlet domains experience no singularity, not only during neighbor
exchange, but also when a center loses neighbors by drifting towards the edge of the
cellular pattern. Instead of stretching and unrealistically elongating, the domain
detaches from its neighbors and a portion of its membrane becomes free. If cell
density is low and cells are not very adhesive, intercellular gaps can exist. The
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representation is thus suitable cven for loose aggregates or subconfluent monolayers
(e.g. Steinberg & Garrod, 1975).

Numerically, computing Dirichlet tesselations is time-consuming but straight-
forward (Appendices A and C). Even with our modification, the areas of Dirichlet
domains are still anaiytically defined as functions of the relative distances
ry; = |[Fi;l = [F;—F | between neighboring centers only. The set of the distances between
centers whose domains share a vertex suffices to calculate not only geometrical
quantities, such as the volumes and areas of the domains, but also their derivatives.

2.2.3. Other examples of free Dirichlet domains

Independent spherical cells, when aggregated and tightly compressed, deform into
polyhedra which can be described by Dirichlet domains (Marvin, 1939; Matzke,
1939; Honda, 1983). Contact surfaces are plane, while intact surfaces keep the initial
radius of the spheres.

Schulze & Wilbert (1989) have photographed a natural example of free Dirichlet
domains in a film of crystallized isotactic polypropylene. Grains nucleate simul-
taneously and have the same growth velocity. When the circles impinge, the grain
boundaries are the mediatrix of the nucleation sites, and grains are almost perfect
two-dimensional-free Dirichlet domains. Gaps then progressively disappear as the
crystallized fraction invades the whole film. Bénard & Dauzére (1913) filmed similar
images of isolated cellular vortices in a Bénard free-surface convection experiment.

Finite size domains appear in territory competition between animals, a common
example of Dirichlet tiling (Hasegawa & Tanemura, 1976). If the animals have a
defense capacity with a finite range when their population is low, empty spaces
appear. These available sites are repopulated by intercalation if the population
increases.

Analogously, when French revolutionaries decided to design new “départements”,
it was proposed that every citizen should be able to ride by horse to his prefectural
city, ideally the city nearest his home, in less than a day (Bredin, 1988), which
constrained the departments to be contained with a rough 30-40 km radius circle,
and fixed a lower bound on the number of domains necessary to cover the whole
country.

2.2.4. Interaction energy

We wish to study the dynamics of a cellular pattern with a surface energy between
a domain { and its neighbors j, ¢;;, or the external medium, e;,,. The total adhesion
energy (Graner, 1993),

E.an= Z Siey+ Z Simeino (1)
pair (i, i) i

associated to a given configuration of N cells, can be written as a function of the
center positions (Appendix A):
Euin = Esan(Fos - . ) (2a)

= Y Eulfi Fpufur F). (2b)
LAk
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In this summation i =1,..., N and the quadruplet ijkl refers to domains sharing a

vertex or a gap. As the energy of a quadruplet depends only on the relative distances
between centers: -

E, an(F; Fp Fis Fp) = E an(Tiss Tiks Tits Tiks Tits Tg), (3)

E.qp is a four-body potential interaction energy for the centers, each quadrupiet
independent of the others. In two dimensions, a triplet of domains shares a vertex
and E,4, is a three-body interaction potential (Fig. 2 and Appendix A).

Eadh(ZD) = Z Eadh(rija rjh rkt')' (4)
i, 4,k

Due to the negative adhesion surface energies, minimizing E,,, would result in a
continuous increase of domain sizes. However, the bulk compressibility or the
membrane elasticity provide a contribution, E,,,, to the total energy which
constrains the volume, or area, of a biological cell near a given value, indirectly
setting a lower bound on cell size (section 3.1 and Appendix B, Graner, 1993). We use
E,..» to account for each cell’s finite size, not for any specific “boundary shortening”
as described by Honda (1983). Here, boundary shortening appears only as one aspect
of decreasing E, 4.

2.2.5. Force

The total energy E, .7, ..., 7y} defines an energy landscape in the space of all
possible domain configurations, labeled by the 3N co-ordinates x,, y;, 2, -. . Zy-
Each center i feels the local effect of the whole energy gradient, which acts on it as a
force:

By, Py
or, ‘

Fi = —viEloul(Fl: sy FN) = (5)
As E,,y is 2 function of the relative positions r;; only, we rewrite F, as a sum over
interactions with its neighbors j (Appendix A):

F. — Z a'E:t.t‘.u.nl &
ST oy

(6)

This force moves the center i to minimize the total configuration energy of the
pattern along the steepest path of the energy landscape. If even one domain is out of
equilibrium, for instance, because of adhesion inhomogeneities around it, it experi-
ences a force, moves and acts on its neighbors. The whole pattern relaxes the initial
local deformation coherently. Thus, the pattern can rearrange under the effect of
surface tensions to diminish the energy of macroscopic heterotypic interfaces. Cells
are interdependent, in the following sense.

In homogeneous identical domains, minimizing the energy involves minimizing
the interface with the external medium. If it touches a substrate, an aggregate spreads
or retracts depending on the wetting angle; in an homogeneous medium, it becomes
spherical. If you add one cell at the surface of an already spherical aggregate, the



A MODEL FOR CELL REARRANGEMENT 485

whole aggregate reorganizes to insert the new cell and become spherical again; this is
the result of each non-equilibrated cell acting on its neighbors.

In a heterogeneous pattern, differential adhesivity results locally in either mixing
or sorting of cell types according to their relative surface energies and may lead to a
configuration with global energy minimum.

In both homogeneous and mixed cell patterns, surface tensions tend to reduce
contact areas. They tend to smooth out the curvatures and mainly affect the highly
curved interfaces.

All Newtonian conservation laws are satisfied since the forces derive from a
symmetric, homogeneous and isotropic potential energy. Even if other factors
contribute to the total energy, we can analytically derive its gradient with respect to
the center positions as long as it is a function of geometrical quantities only. The
force F, is then a known function of the 7; and can also include gravity or
centrifugation forces.

2.2.6. Evolution equation

During biological cell rearrangement, the cell inertia is negligible compared to
viscous dissipation, so that evolution is a slow relaxation along the energy gradient;
the way dissipation is modeled is then unimportant (Appendix D). We chose here a
cellular description: each domain has a viscous drag proportional to its velocity,
Fie = — u:0. The evolution equation is then deterministic (although we can incor-
porate other forces F;.,, not deriving from an energy, such as random fluctuations):
TielF, )
dt g

i}i=

3. Numerical Computations

3.1. METHODS

We want to explore the landscape defined by the energy of the pattern: we want to
determine whether there are local energy minima, or whether the cell configuration
can spontaneously relax towards equilibrium through a steady descent along its
energy gradient. As the landscape is complicated, we must use computer simulations.
We thus simulate the evolution of a collection of cells, following a deterministic
gradient descent, according to egns (6) and (7). Once we understand better the effect
of energy minimization on cell rearrangement, we intend to include in future articles
other phenomena which play a role in cell rearrangement: thermal fluctuations,
chemotaxy, or exploration of neighbors by active protrusions.

Efficient 3D computations using Dirichlet tiling are possible (e.g. Tanemura et al.,
1983), but for simplicity we investigate only 2D patterns (a plane section of 3D
Dirichlet domains is not a 2D Dirichlet tiling). Since 3D allows more degrees of

freedom for topological rearrangement, it is likely that whatever cell rearrangement
occurs in 2D also occurs in 3D.
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Biological cases of cell rearrangement related to cell adhesion which can be
approximated as 2D include the compaction and rounding of a homogeneous
aggregate, or tissue healing; in heterogeneous aggregates, dispersal, mixing, sorting
and engulfment (Graner, 1993). We do not consider specifically 3D problems like
cylinder elongation (Mittenthal & Mazo, 1983) or gastrulation (Odell et al., 1981).
We do treat free boundaries, which simulate an aggregate suspended in a culture
medium (e.g. Steinberg, 1963). A cell monolayer on an homogeneous substrate is
quasi two-dimensionalf, with an adhesion energy depending on its domain perimeter
(Steinberg & Garrod, 1975); seen from the top it has free boundaries, and the
adhesion energy between cells and substrate can be incorporated in the energy
associated with the bulk of each domain.

The surface energies e;,, and e;; can, in principle, be experimentally measured, but
not derived from microscopical mechanisms {for a discussion, see Bongrand, 1988;
Curtis & Lackie, 1991; Graner, 1993). The hierarchy of the ¢, and e;; determines the
effect of cell adhesion; the relative values of the e, and e;; determine the actual
configurations obtained, while their absolute values and the dissipation only affect
the time scale of the relaxation.

On the other hand, the stabilizing term E_,, must be determined with care to
avoid any change in cell rearrangement. We consider 2D elastic membranes, whether
stretched or compressed, their perimeter fength L returns to a fixed value L, We
chose E,,,, = 1/2x(L—L,)% but we also used E_,, = 125y, (4 — A)*, where A4 is the
bulk area of a 2D cell: it does not affect the simulations of shape and position
rearrangement once E,, is fixed consistently with surface energies (Appendix B).

Our initial conditions use cells either aligned or randomly dispersed. For random
dispersal we chose cell shapes to be close to equilibrated shapes, using an excluded
volume procedure; two centers cannot be closer than a fraction of R. Alternatively,
the initial cell positions can be the result of an equilibration. For aligned cells, we
introduce small random fluctuations in their initial position to avoid four-cell
vertices. Except as noted, the simulations we present are robust to different initial
conditions.

We use a flexible time step to ensure a smooth rearrangement, even near the
singularities of the energy landscape (Appendix C). Instead of the number of time
steps, we record the integrated elapsed time. To define the time scale, we express ali
the surface energies as a function of an energy scale E, and fix the dissipation. If u, is
the normal fluid viscosity used in hydrodynamics (Appendix D), the time scale 1, is:

R /R
r, =t =B (8)

1] o

We use R~103cm and the direct measure by Gordon et al. (1972) of p,/E, =~
10-® cm sec™, so 1, is of the order of 1000 sec. It would be 10-100 sec if y, = 10°

1 Neighbor exchange in a monolayer is really a 3D process: former neighbors can still remain in apical
contact when future neighbors have established a basal contact. The transitory four-cell vertex moves
vertically along the apico-basal axis: either because of cell protrusion, intrinsically oriented (Jacobson et
ai., 1986) or triggered by apico-basal positional information (Fristrom, 1988), or under the effect of
surface adhesion.
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poise, as Evans (1983) estimates for white blood cell cytoplasm and E, of the order
101102 erg cm ™2 (Bell, 1988).

3.2. APPLICATION TO HOMOGENEQOUS PATTERNS

With only one type of cell, say “dark”™ (d), there is a competition between the two
surface energies e, and e,,,, quantified by the surface tension y,, = e, —€44/2 [F1g.
4(a) and (b)]. Except for the trivial case where e, < e,/2 and celis do not adhere
(Fig. 5), v, is positive and cells decrease their total interface with the medium. A
loose aggregate compacts and most intercetlular gaps shrink (Fig. 6). Single cell
removal from an epithelium (Honda, 1983) results in healing by increasing the

(a)Ydm << 0 (b)Ydu > 0

) YiM< 0 (e) YdI <0
0

o)
=)

3
)

o
C o
[}
0

o fo)

pat =Yy

(g) Yim > Yydl + Ydm (h) Ydl > Ydm + Yim

FiG. 4. Surface tensions [eqn (9)] determine the configuration with the minimum global energy.
(a)-{b) With one type of cell, two cases occur: dispersal and cohesion. (c){e) With two types of cells and at
least one negative surface tension: cells disperse, or mix into a checkerboatd. (f)<h) If one surface tension
is greater than the sum of the others, the corresponding interface vanishes at equilibrium. (i) Between these
extremes, the three interfaces d-1, d-M and I-M are stable and meet along a triple contact line. Their three
radii are determined by their contact angle and the proportion of dark and light cells. All these
configurations are experimentally observed, but (e}{i) are dependent on initial conditions, and melastable
cases also occur (from Graner, 1993). {{J), Medium; (|ll), cohesive (d) cells; (M), weak () cells.
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FiG. 5. Case of negative cell-medium surface tension. (a} A loose aggregate, similar to Fig. 9(a), with one
cell type; (b) after ~2min (*12ty) the cells have separated. Here, e, ;= —S5E, and e, = —3E,,
}'d" = - 0'5E°.

(a) ' (b)

F16G. 6. Compaction of an aggregate. (a) The same loose initial conditions as in Fig. 5, and the same e,,.
The only change is the suppression of the cell-medium energy e,y =0, ie. pg, = 2-5E,. {b) Afier =6 min
(0-351,), cell positions and shapes have relaxed and the interface length has decreased.

cell—cell contact length (Fig. 7). In the absence of any substrate, other tissues or
adhestvity gradients within the cells, the minimum energy configuration corresponds
to a minimum interface with the external medium and can be reached under adhesive
driving (Fig. 8). The shape of the cells also relaxes. As expected for a surface-energy
driven system, the average number of sides per cell within the bulk is six§; and as the
perimeter length is constrained, few-sided and many-sided cells are almost non-

§In 2D, a four-cell vertex has a longer perimeter than two three-cell vertices and decays; only three-cell
vertices are stable (e.g. Gardner, 1986). Each edge is shared by two cells, so N,.., = N, {n>/2. Each cell
has on average {n) vertices, each shared by three cells, s0 N, ., = Ny <n>/3. The Euler relation states
that N e — Noges+ Noens = 1, and gives: Np((n)/3—=<{n)/2+41) = 1. In the limit of a large system
{m>f6 =~ 1 (Graustein, 1931).
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(b)

FiG. 7. Individual cell removal. (a) The same compact aggregate as in Fig. 6(b), from which two cells
have been removed. Surface energies are the same. (b) After ~ 5 min (0-321,), cells from the margin relax
into the empty space and cover it, while external cells barely move.

(a) . (b)

FiG. 8. Rounding of a long column. (a) Artificial initial conditions, same surfaces energies as in Figs 6
and 7. (b) After =~ hr (11-61,), cells move over distances much longer than their diameter.

existent. The distribution of side numbers is very narrow, with almost all cells penta-,
hexa- or heptagons (Glazier, 1989). As in biological patterns (Honda & Eguchi,
1980), a perfect hexagonal pattern is seldom reached since it requires either selective
deletion of ill-placed cells (Cagan & Ready, 1989), rare initial conditions (Herdtle &
Aref, 1991), or that cells explore all the available configurations. Surface energy
minimization does not require that cells be isometric (Lewis, 1948; Smith, 1954;
Honda, 1983).

3.3. CELL MIXTURES

Mixtures of two types of biological cells lead to various final states such as
dispersal (Mége, 1991), checkerboard patterns (Honda et al., 1986), total or partial
cell-sorting and engulfment (Steinberg, 1963, 1970, Armstrong, 1989). We chose
different values for the surface energies to simulate these observations and to
determine the possible relative cell adhesivities.
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Surface tensions y are the differences in energy between a heterotypic interface and
the homotypic interface that the same membrane portion could establish. They have
an intuitive significance, they determine the minimum energy configuration of the
macroscopic interface. With two cell types we define “dark” (d) cells as more cohesive

than “light” (f) cells if e,; < e;; < 0. The three surface tensions y,,, 4 Y1as are (Graner,
1993):

e te
Yar = €y — ddz 5, (9a)
€
Yam = €ap— ¥, (9b)
e
Vi = €M — g (9c)

Usually, we take e,,, and ¢, as equal to zero, leaving three free parameters. If so,
the behavior of the system is described by one dimensionless parameter quantifying
the relative energy costs, yu/(Yan —¥ia)> Negative when ey, < (e, +¢;)/2, and greater
than one when e, > ;. We present one set of typical adhesion parameters for each
case (Fig. 4).

33.1. Case: ey <(eg+ey)/2 <0

If the cost of a heterotypic d-I contact is less than the average of the homotypic
contacts, 7, is negative and cells intermingle. Such mixing, which occurs during the
sexual maturation of avian oviduct, has been analyzed by Honda et al. (1986). Using

their surface energy values we simulate the evolution of a checkerboard pattern
(Fig. 9).

(b)

F1G. 9. Checkerboard pattern. Relative values of the energies obey the relation determined by Honda et
al. (1986) for avian oviduct, ey, —eyy = —[e;—e4), corresponding to a negative y,4. (a) Initial conditions
sufficiently close to the final state (see text), (b) After & 45 sec ((-0431,), cells intermingle, A defect creates a
deformation in the checkerboard extending over a few cell diameters. Surface energies are ey, = ¢y =0
eq=—23E, ey=—4E, ey=—2E, Cotresponding surface tensions are y,=13E,, y4=—135E,
Yae = Eq.
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This original case where 7, is negative shows some essential physical features of
surface energy-driven patterns. The minimization of surface energy tends to decrease
the homotypic interface and to create a periodic pattern of four-sided, roughly
square cells of alternating type. But when the differential adhesion brings two three-
cell vertices near each other they oscillate around a singularity, since a four-cell
vertex is unstable. An array of four-sided cells is unstable and decays into a pattern
with a wide side number distribution, from tetragons to octagons, as observed
cxperimentally.

This instability, which affects numericai simulations (Honda et al., 1986), arises
from the shape of the energy landscape. Arbitrary initial conditions usually result in
a large number of defects, whose effect extends a few cell diameters inside the pattern.
The initial state of avian oviduct is not arbitrary. We must select an initial condition
near the desired pattern. We show a picture with one weakly metastable defect
[Fig. 9(b)].

The experimental checkerboard pattern, alternating big and small cells, cannot be
represented by standard Dirichlet domains. Since membranes are the mediatrices
between two neighboring centers, they are necessarily regularly spaced to represent a
strictly periodic pattern of dark and light ceils, so all the cells have the same size. By
relaxing the constraint on R, however, our free Dirichlet domains could account for
two different fixed cell sizes R, and R, [Fig. 3(a)]. When two neighboring centers i, j
are separated by r;, instead of fixing the membrane position at a distance x;=x; =
r;;/2 from both centers, we could consistently define x; and x; as:

X+ X =14 (10a)

Ri+x?=R}I+x}. (10b)

3.3.2. Case: (e +e€y)/2 <ey<ey+(eim—en)

In this case, y,, is positive and the total energy is lower if cells are sorted into
homogeneous clusters. Moreover, Y4y > Yy + Y, the d-M interface is unstable and
dark cells tend to sort inwards. Since an I~/ cell contact is more costly than a d-/
one, itself more costly than a d—d one, two dark cells can contact without having to
overcome any potential energy barrier. More precisely, there is no interaction
between two distant cells and their relative movement is energetically neutral. If,
during the rearrangement of the whole pattern, two initially distant dark cells
contact, then their infinitesimal contact surface increases spontaneously. In addition,
if we included thermal fluctuations in the cell positions, cells would diffusively
perform such energetically neutral movements (Graner, 1993). Similarly, three dark
cells can expel a light cell. Simulations display this spontaneous sorting by neighbor
exchange. We present an example where ey,. e, = (e,)%, as in the speculative “site-
density model”, where adhesivities are determined by the surface density of adhesion
sites (Steinberg, 1963, 1975).

To emphasize the effect of surface energies, Fig. 10 starts with the same loose
aggregate as Fig. 9. Cohesive dark domains coalesce and a light monolayer forms,
leading to a totally sorted configuration. This sorting also occurs for tight, gapless
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(a)

{d)

Fig. 10. Complete cell-sorting. (a) Initial configuration: the same loose aggregate as in Fig. 9.
(b} =4 min (0-22t ), cohesive dark cells cluster. (¢) ~ 10 min (0-601 ), dark clusters coalesce and light cells
fill the external monolayer. (¢) =1 hr (4-0t), sorted dark and light clusters complete their rounding.
Surface energies are chosen 50 that eg.e,~ (€)% ey =y =0 eyy=—12E,; ey=—5E, ¢,=—2E,.
Corresponding surface tensions are v, = 6E,, va = 2E,, Y1 = E,.

initial conditions (Fig. 11), showing that adhesion alone can drive experimentally
observed long-distance cell rearrangement (for a review see Steinberg, 1970;
Armstrong, 1989).

In the checkerboard, each cell relaxed among its neighbors within a short time.
But during what we define as “long distance rearrangement”, some cells, initially very
distant (separated by many cell diameters), happen to come into contact||. Cells that
are 2D are stiffer than 3D cells and intercalate less easily between neighbors;

|| To distinguish short-range from long-range rearrangement, this criterion is usually more relevant than
requiring that two initially close cells separate. During tissue growth and cell division, as in Fundulus
epiboly (Trinkaus, 1984; Keller & Trinkaus, 1987), cells inivially in contact are finally spread over the
whole egg surface without any large-scale movement relative to their neighbors. In tissue elongation and
narrowing, for example, during sea urchin gastrulation (Ettensohn, 1984; Hardin, 1987), local
rearrangement allows convergence of cells initially slightly separated on the same axial level, and cell
divergence along the elongating archenteron axis. But convergence of cells in arbitrary directions results
either from unlikely tissue shrinking, or from global rearrangement where neighboring cells have
independent trajectories.
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FiG. 11. Cell-sorting in a compact aggregate. (a) Artificial initial conditions, same energies as in Fig. 10
{b) 6 min (0-361.); (c) ~11 min (:67,); (d} =15 min {93z,). Cells are sorted, rounding is not complete
yet.

symmetries are more likely to create neutral or degenerate situations; for example, a
cell submitted to a force on both sides feels a resulting zero force. In such case, our
strictly deterministic model does not break the symmetry and the Dirichlet domain
remains pinned; while a real cell would actually move, although the energy landscape
is nearly flat. However, the discrete time step allows cells to ignore some small flat
energy regions (Appendix C).

The same surface energies simulate the engulfment of a cohesive dark aggregate by
a less cohesive light one (Fig. 12), with the same final state as cell-sorting (Townes &
Holtfreter, 19535, Steinberg, 1970; Armstrong, 1989). Dark cells tend to decrease their
interface with the culture medium, as a d-{ contact is less costly. The triple contact
point is out of equilibrium (since the Young condition is not satisfied) as are the high
curvature regions. Since only a few points along the outer boundary drive the long-

distance cell movements, rearrangement is slow. The same reason slows the rounding
of a stretched aggregate (Fig. B).
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(a) (b}

(e) (d)

F1G. 12. Engulfment. (a) Initial conditions: two homogenecus aggregates are in contact, same energies as
in Figs 10 and 1!1. (b) =9 min (0-56t,), the dark-light contact length increases. (c) =45 min (2-61,),
dark-medium interface decreases and light-medium interface increases. (d) ~2 hr (7-17,), rounding is
complete and the final state is similar to Fig. 10(d}.

3.3.3- Case: (edd+e”)/2 < ed! < edd+(e;M—edM)

If the surface energy with the medium is different for both the two types of cells,
for example, due to their hydrophily or hydrophobicity (Davis, 1984; Bongrand,
1988), we can observe “position reversal” [Fig. 13(a)-(c)]. Indeed, if e;,—ey >
Cam—€aa (€. Yipr > Vamr +74), the cohesive dark cells no longer have the highest
surface tension with the culture medium; at equilibrium they surround the light cells
(Phillips & Davis, 1978). However, the final state is sensitive to initial conditions
[Fig. 13(a"}{c’)], and a metastable state can appear (Graner, 1993) since dark cell
clusters, which are never in contact with the culture medium, have no opportunity to
sort outwards (Armstrong & Armstrong, 1984).

3.3.4. Case: ey+(esr—epn) < €y < (€ + €1ps)

If a d-1 contact is more costly, y, is large enough that it is possible to satisfy the
Young condition. The equilibrium state consists of a tripie contact between the
medium, a dark and a light cluster. If transitory heterotypic contacts are too costly
to allow neighbor exchange, sorting does not occur spontaneously. Thus, already

formed clusters round, but there is no effective attraction between dark cells to make
clusters coalesce (Fig. 14).
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(a")

(a)

(b}

(c"}

{c)

F1G. 13. “Position reversal”. Cell—cell energics are the same as in Fig. 10, but light~medium interface has
a high energy, so that y;, > y;+74. This situation is sensitive to initial conditions (Armstrong &
Armsirong, 1984, see text). (a} Same initial conditions as in Fig. 12. (b} =20 min (1-31,), light-medium
interface decreases. (¢} ~3-5 hr (131,), a lower energy state is reached. The respective position of the cells is
not related to their cohesiveness (Phillips & Davis, 1978). {a) Artificially selected initial conditions.
(b) =1 min {0-0717.). The more cohesive dark cells cluster and are totally surrounded by light cells. Dark
cells in contact with the medium sort outwards. (¢) & 12 min (0-721.). Cells reach a metastable state
(Graner, 1993), In both simulations, e,,, = E,; ¢,,; =9E,. As above, ¢,y =—12E,, e, = ~5E, ¢, = —2E,.
Corresponding surface tensions are y,,, = TE,, yq4 = 2E,, 7 = 10E,.
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(b)

(a") (h")

Fi1G. 14. Partial cell-sorting. Identical to Figs 10 and 11, except that e, is larger than both ey and .
The lower energy state is determined by the Young condition, but potential energy barriers can create
metastable states. (a) Same loose initial conditions as in Fig. 10. (b} ~ 11 min (0-68z,). Cells remain pinned
and no longer sort spontaneously. (a') Same tight initial conditions as in Fig. 11, (b’) 2215 min (0-901,),
light cells tend to surround dark cell clusters which remain separated. In both simulations, e, = —E,; as
above, ey = e =0, ey = —12E,, e; = — 12E,. Corresponding surface tensions are y,,, = 6E,, y4 =6E,,
Vine = Eo-

(a) (b}

Q
®e

FiG. 15. Dispersal, &, is high, 5o that y4 > 4+ 7u- (2} Initial conditions without homotypic contacts.
(t) ~2 min (0-14r,), heterotypic contacts are replaced by cell-medium interfaces. Here, ¢, = E,; as above,
ep=ey=0, ey=-—3E, e,=-—2E, Corresponding surface tensions are y,, =13E,, y,=33E,
Yine = Eq.
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3.3.5. Case: (et eim) <eg

If one surface tension is greater than the sum of the others, as in case (b), the
corresponding interface vanishes and no triple point exists. If ey > e ) +ep or
equivalently 74> v+ Vs> the aggregate dissociates (Mége, 1991). Evolution is
quick, as rearrangements are short-range (Fig. 15).

4. Discussion
4.1. CRITIQUE OF THE MODEL

Our model was designed to study the effects of differential adhesion on cellular
patterns. Does it determine the energy landscape in which the cells move?

Each cell is represented by one point, its Dirichlet center. After defining the total
adhesion energy of the pattern, we take its gradient with respect to a subset of the
infinity of all position variables. Thus, we do not explore all possible ways by which
cells can intercalate and move. But cells can rearrange by continuously going down
the gradient of their adhesion energies, and real cells can probably do so more easily
than in our simulations. Cellular patterns can rearrange and sort under adhesion.

Our simulations have some numerical limitations. The discrete time steps can
create oscillations in numerically unstable cases (Appendix C) and the finite number
of geometrical parameters constrains the shapes and gaps (Appendix B), 3D simula-
tions with a large number N of cells are possible (Appendix C), but an extended
Potts model is more appropriate for a quantitative characterization of cell-sorting
(Graner & Glazier, 1992) and a discussion of the possible role of fluctuations (Glazier
& Graner, 1993). Biological cell-sorting typically involves 10°-10% cells and,
although cells rearrange more easily in 3D space, they do not always reach the

minimal energy state, even if (e, +ey)/2 <ey < e (Steinberg, 1975; Sulsky et al.,
1984; Graner, 1993).

4.2, RELEVANCE TO BIOLOGICAL CELLS

Biological cell surfaces are usually adhesive, and driving by adhesion can thus be a
general morphogenic mechanism. Other physical phenomena may be involved as
well (Newman & Comper, 1990). For loose aggregates, Brownian motion (Graner,
1993) and residual convective flows in the culture medium can create random cell
movements.

Biological mechanisms can co-operate to make a ceil move (Oster et al., 1983), for
example, cell rearrangement is accompanied by amoebal-like deformations (Oster,
1984; Keller & Hardin, 1987; Oster & Perelson, 1987; Weliky & Oster, 1990). There
is evidence that cellular actin-rich extensions (Oster, 1984; Jacobson et al., 1986;
Armstrong, 1989) and contractile actin microfilaments (Owaribe et al., 1981; Owaribe
& Masuda, 1982; Fristrom, 1988) could influence morphogenesis (Ettensohn, 1985).

For most cells the visible local protrusions or contractions in cell shape reflect the
cell's internal activity. However, observed deformations could sometimes be a
consequence of cell movements (Honda et al., 1982; Kolega, 1986), for example, when
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cell motility has been inhibited. Trinkaus et al. (1992) showed that 100% of an
observed cell population could undergo directed movements during Fundulus gastru-
lation. However, they raised two issues. First, contact-inhibited filo-lameilipodial
cells moved. Second, after cell division, daughter cells resumed their mother’s
movement within a time too short to account for rearrangement of their locomotile
apparatus.

Both phenomena and other surprising observations are clearly compatible with
relaxation under surface adhesion (Glazier et al., 1993, in press); for example, the
decrease in the number of marginal enveloping layer cells during Fundulus epiboly¥,
the non-isometricity of biological cells (section 3.2), or the large mobility of marginal
cells during wound healing and the slowing down of cells’ velocities when the wound
is closed (Graner, 1993). Adhesion provides an intuitive explanation, especially when
cells can rearrange without having to overcome any potential energy barrier.

5. Conclusion

We have examined the effect on biological cell movement of a deterministic force
based on the gradient of the cell-cell adhesion energy, using a flexible geometrical
model based on free Dirichlet domains. The model naturally treats the cell geometry
in rearrangement, It also describes cell boundaries, intercellular gaps and surface
adhesion. Both surface energies and surface tensions affect the global tissue
organization.

We have implemented a two-dimensional simulation and studied the effects of
discretization on our computations. We simulated aggregation and rounding of a cell
collection and aggregate dissociation, both of which involve only short-distance
rearrangement. We could also simulate the checkerboard pattern of sexually
maturing avian oviduct. Long-distance movements under differential adhesion can
also reproduce aggregate engulfment and total and partial cell-sorting with the
correct time scale. “Positional reversal” is also possible.

We have thus shown that rearrangement of both passive and active cells can be
driven by the adhesion energy of the total cell collection alone. Adhesivity is a
general feature of cell surfaces and it offers a coherent view of morphogenetic
phenomena for both cells and tissues.

We are indebted to J. A. Glazier, H. Honda, M. Sato and M. Weliky for valuable help and

fruitful discussions, This research has been financially supported by the Inoue Foundation,
J.5.P.S., Monbusho.

9 During Fundulus epiboly the margin of the epithelial enveloping layer, pulled by the underlying yolk
syncytial layer, spreads over an increasing portion of the egg (Keller & Trinkaus, 1987; Weliky & Oster,
1990). If the global epithelium was relaxing its total energy, the abserved decrease of marginal cell number
would be much less surprising and cells at the boundary would not need be functionally different from the
others. Indeed, we could interpret the decrease by the following geometrical packing argument. The
surface S of a spherical cap of radius r and polar angle 8 is § = 2nr(l —cos 8), its perimeter P = 2zrsin 6.
When cells relax, if we consider N square cells uniformly tesselating this cap, the cell side a is determined
by the average available space, i.e. 4> = S/N. The number of cells at the margin is n = P/a, so that
n? = P*N/S = 2nN(1 +cosB); n is slightly greater if cells are stretched along the meridian by the traction

of the yolk. This function is strictly decreasing when # increases, although P is increasing during the first
half of epiboly.
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APPENDIX A

Free Dirichlet Tiling

The positions 7; of N cell centers C; suffice to label a pattern. We follow a standard
Dirichlet tiling algorithm (Tanemura et al., 1983). To determine the neighbors of C,,
we first calculate the distances to other centers, ry;=|F;—r,|, and keep only the
centers with ry; < 2R, labeled C, ... C; in Fig. 16. Among them we look for C, such
that r,, = min, (r,,); cells 1 and 2 are necessarily in contact. We then look for the
center C, such that the circle including C,, C, and C, is the smallest; this circle is
centered on the point P, ,, where the mediatrices meet, i.e. the triple contact between
the three cells. We then determine progressively the set of successive neighbors.

We calculate all the geometrical quantities of a two-dimensional pattern by
decomposing them over pairs and triplets of neighbors. For instance, the contact
length between cells 1 and 2 is the sum of the lengths @,,.P,,; and Q,,.M,,. The
length Q,,.P,,,, as the other elementary quantities of the triangle C,.C,.C,, is a
symmetric function of its side lengths r,,, r.4, 75, alone, and is independent from the
positions of other centers (Tanemura et al., 1983). Similarly, r,, and R alone
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Fi1G. 16. Free Dirichlet domains in two dimensions. C, is the Dirichlet center of domain i. The
membrane between domains i and j is the mediatrix of C, and C, and Q, is their middle. M, is at a
distance R from both C, and C, and P, is equidistant from C,, C, and C,.

determine the length Q,,M,,, and r;; r;s,7s; and R determine the free arc
M,, M,s. We then decompose the total surface energy E,q, over each membrane
portion. In three dimensions the surface energy of free Dirichlet domains is also a
simple function of relative distances between pair, triplets and quadruplets of
neighbors.

We then calculate the energy gradient with respect to the relative distances. The
center C; exerts upon C; a force F,g,(j—i) = —0E,4/0ry. Since ry.dry = Fy.dry, this
force is equal to:

B (i ai OEuan Ty _ OE.an T
Fog(j=i)=— 222 f o sb U A.l
il kS (A1)
and is thus parallel to r,; (more generally, the gradient of a function of |F| is always
parallel to 7). If C, is a neighbor sharing a vertex with C; and C,, this force is a
function of ry;, ry and ry, symmetric in ry and r,. Sulsky et al. (1984) derived a
similar formalism for standard Dirichlet domains. We take into account both free
and bound membranes.

APPENDIX B

Finite Cell Size

Simulations of biological cells include a finite length scale stabilizing the cell
against coarsening. This constraint is usually implicit: finite or periodic boundary
conditions fix the average volume allocated to each cell. We explicitly introduce in
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the total energy E, a term E,,, which maintains the cell size near R. As we already
compute the perimeter length L for the adhesion term E, s, We use a perimeter
elasticity, E, . = 1/2x(L— L,)*. Since E,,,, involves simultaneously all the neighbors
of one domain, the effective center—center interaction is non-local. We calculate
analytically the total potential energy E,o = E,an+ Eqa @5 2 function of the ry;, but
we cannot separate it into single vertex contributions.

We can make other choices to describe, for instance, bulk compressible cells,
vacuolized cells, or a 2D section of 3D cells with variable height. As our domains are
convex, these choices are roughly equivalent and do not affect the evolution of
simulated patterns. However, a pressure term alone is not sufficient to prevent the
instability of the cell size. We can also describe incompressible cells if we use the
dynamic equations defined by Sulsky et al. (1984). Real cells have a more complex
constitutive relation between area, volume and applied forces.

If the target perimeter L, is greater than the perimeter L, = 2nR of 2D free cells,
the cells tend to become free, they disperse and gaps appear. If L, is much smaller
than L, the cells tend to decrease their perimeter and shrink slightly. We can extend
the model by setting a different target perimeter for dark and light cells [Fig. 3(a)] or
letting R and L, vary [Fig. 3(b)]. We set L,/L, =038 in all the 2D simulations shown.

x is a Lagrange multiplier associated with the perimeter conservation constraint. If
x - L, is much smaller than the differences in surface energies (or surface tensions), the
size constraint is ineffective and cells grow (if surface energies are negative) or shrink
(if surface energies are positive). If x - L is much greater than the surface tensions, the
pattern freezes. We fix x L, = SE in Fig. 13,k L, = 3E, in Figs 2, 10, 11, 14, 15, and
x-L,=E, in Figs 5-9, 12, 15, i.e. roughly half the maximal surface tension acting on
the cells. We find that in this regime the perimeter constraint does not affect the
evolution of the shape or the position relaxation. Our simulations are barely
sensitive to the value of L,.

APPENDIX C

Time Evolution

Equation (6) defines the forces F, for a given configuration. Each iteration of the
simulation simultaneously moves each center, according to eqgn (7), by a displace-
ment vector A7, = F,At/u.. A new configuration is then reached and another time
step begins. This simultaneous updating is close to actual cell movements, but using
a discrete time step raises some numerical difficulties.

We usually choose a time increment small compared to the time scale z,, for
example, a hundredth. To avoid any divergence of the displacement when a cell
passes near a singularity of the energy landscape, we require that |Ar| is never
greater than a maximum, A,,. In practice, we compute the greatest force which acts
on a cell, F,,, = max|F,|. The time increment is then:

At = min [A"“"‘, oou,]. | (C.1)
F e
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The elapsed time ¢ increments by At at each step and this integrated time is
displayed.

We choose a small value A, =0-1R for the simulations of dissociating hetero-
geneous systems (Figs 9 and 15). We checked that the patterns and the total
integrated time are the same if we chose a smaller A_,,. Homogeneous patterns have
a smoother energy landscape and tolerate quicker computations, so we use A, =
0-2R in Figs 5-7.

Large relative movements of the cells are slower processes. Some regions of the
energy landscape are very flat. For instance, a cell attracted in two different
directions at the same time feels a weak resultant force. To break the symmetry of
such an unstable energy extremum, the cell needs to move a finite length and
intercalate between its neighbors. It takes an infinite time if we constrain too severely
the maximum displacement. Let this cell, subject to a weak resultant force, make a
small movement. Then, during the same time step, another cell, in a region where the
energy landscape has a steep slope, may move a long distance. Thus, at each step we
allow at least one cell to move by setting A_,, =05R, in Figs 8 and 10-14. The
problem is that a few cells may oscillate around a singular energy minimum (for
example, a neighbor exchange), instead of relaxing. Allowing such a high discrete
displacement does not introduce any randomness; it only favors the proper move-
ment of a few cells. This accommodation is necessary to escape from the saddle
points of the energy landscape but does not artificially breach potential energy
barriers, so metastable states are preserved [Figs 13(c’} and (14)].

The initial calculation of free Dirichlet domains is time-consuming (Appendix A).
Due to the finite size of the domains, each center has neither neighbors further than
2R, nor very close neighbors. Most domains have five to seven sides, fewer for cells
with a free surface. The maximum number of neighbors n,,,, is then always less than
ten for the initial pattern, and even less after equilibration (n,,, is slightly higher in
three dimensions). Thus, storing a whole pattern of N cells only requires DN
parameters for the center positions, where D = 2 in our simulations, and a symmetric
N - (nn.y)”* array of relative distances between a center and its neighbors.

As we fix A,,, we know that we need not renew the total computation of Dirichlet
domains at each step, as only a cell within a distance R/A,, can become a new
neighbor. Thus, the computation time, like the storage capacity, is of the order
N (By,,)? (Tanemura et al.,, 1983).

More sophisticated algorithms of gradient descent could be used (Press et al., 1986)
but would not solve the double difficulty that neighbor exchange creates singularities
(i.e. strong oscillations) and that at the same time other cells which are subject to
much weaker forces are more essential to the simulation (see e.g. Sulsky et al., 1984).
Our choice was guided by the efficiency of computing Dirichlet domains, since it
requires only one computation per time-step. The program is available upon request.

APPENDIX D

Viscosity of a Cellular System

Viscosity appears in the literature in two mutually exclusive forms, cellular and
fluid. Using the Navier-Stokes equation treats the cell collection as a continuous
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fluid (Gordon et al, 1972; Phillips & Steinberg, 1978). The viscous force per unit
volume is much bigger than the inertial term (Purcell, 1977):

p A > ng), (D.1)

as is easily shown by considering the dimensionless Reynolds number Re = cRp/u,.
Here, ¢ = [t] stands for velocity, R for typical cell size, p for density and u, for fluid
viscosity. For an estimate, we can at least assume that g, is much greater than the
viscosity of water:

> 1072 poise, (D.2)
or equivalently that:

v, =py/p > 1072 cm? sec™ 1. (D.3)

One cell radius R and speed ¢ can be as large as 10~ cm and 10~* cm sec™! for
hydra cell aggregates (Sato, M. & Graner, F., unpublished data), but ¢ is much
smaller in intact tissues such as natural embryos; Odell et al. (1981) use
10~? um sec*. Certainly, Re is less than

1073 em x 10~* cm sec=!/10-2 cm? sec~! ~ 1075, (D.49)

and might be 10° times smaliler if 4, ~ 10® poise, as Evans (1983) estimates for white
blood cell cytoplasm, or 10°-10'° times smaller if u, lies in the range 0-4 x 10° to
07 x 10® poise, as Gordon et al. (1972) estimate for embryonic cells aggregates.
On the other hand, in a discrete cellular formalism the Newtonian equations of
motion for a single cell yields:
dv . -
mo =—pd+Y F. (D.5)
dt
The coefficient g, stands for a “cellular viscosity” (Odell et al., 1981; Weliky & Oster,
1990; Weliky et al., 1991); it could even be anisotropic if we separately defined shear

and compression values. It also dominates the inertial term and the equation of
motion becomes:

1
He

where u; ! is the cell mobility. Confusion can arise from the notation p and
subscripts are needed because yu, is not a true viscosity, having the dimension of
poise-cm, or g sec™ .

The fluid description has the merit of linking the dissipation to spatial variations
of velocity, instead of absolute velocity, while the cellular one emphasizes the
discontinuous, independent behavior of different objects. The difference between
absolute and relative velocities is not essential as long as each cell moves more than
the average motion of its neighbors, i.e. there is no global drift. These two aspects
have been formalized by Sulsky et al. (1984) using incompressible Dirichlet domains.
In general, intuitive correspondence between both descriptions can be realized by
thinking of a single cell moving within an immobile cell mass. The Laplacian of the
velocity field, Ad, is of the order %/R? and the force per unit volume — p,Ab is exerted

[}.Fl, (D.6)

D=
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on a volume roughly of the order R, so that compatibility of both descriptions is
ensured only if:

—

v -
_aufEERs = — U1, (D.7)
or
He = )ufR‘ (D.8)

With R of order 10~ ¢m and the value of p, estimated by Gordon et al. (1972), ,
lies within the range 10° to 10° poise-cm (or g-sec™').



