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ABSTRACT
In two chapters of his book On Growth and Form, D’Arcy Thompson
used numerous biological and physical observations to show how
principles from mathematics and physics – such as pressure
differences, surface tension and viscosity – could explain cell
shapes and packing within tissues. In this Review, we depict
influences that enabled the genesis of his ideas, report examples of
his visionary observations and trace his impact over the past 100
years. Recently, his ideas have been revisited as a new field of
research emerged, linking cell-level physics with epithelial tissue
structure and development. We critically discuss the potential and the
limitations of both Thompson’s and the modern approaches.
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Introduction
The diversity and beauty of shape in nature has been a source
of inspiration over centuries. In his famous book On Growth
and Form, D’Arcy Wentworth Thompson [first edition, Thompson
(1917); second edition, Thompson (1942)] discussed the
importance of physics in determining cell shapes within tissues.
This book and its author have had a striking influence on scholars in
several fields, and are still highly quoted 100 years later, an unusual
destiny for scientific works such as this.
As Thompson observed and predicted, based on simple and

specific observations, living matter seems to obey physical and
chemical laws. From looking at the outer contours of cells within
monolayers, Thompson claimed that the specific dimensions of cell-
cell contacts and their respective angular orientations for each single
cell within an epithelial tissue as a whole were set by rules that
physics could address quantitatively. The link between small scale –
the cellular contour – and large scale – the tissue – was thereby
formulated with no a priori knowledge of the molecular actors. This
simplification allowed him to propose an analogy with physical
foams in two dimensions, that is, foams squeezed between parallel
glass plates so that bubbles form amonolayer (Fig. 1, top). Although
cells are hundreds of times smaller than bubbles in standard foams
and are composed of living matter, Thompson assumed that the
rules describing how bubbles organised geometrically within a

foam (discussed further below) could extend to actual cells in
epithelial monolayers. It is at this level that similarities between
foams and tissues were initiated, and this eventually led to the
emergence of new concepts for developmental biology. It should,
however, be noted from the outset that Thompson’s principles
contained ideas with oversimplified frameworks, particularly in
terms of the geometries and tensions of cell walls, and should be
treated with due care; we will explore these limitations in detail
below. These oversimplifications sometimes impact the modern
assumptions behind computer simulations and force inference
measurements.

Thompson may not have been the only originator of the idea
that tissues can be compared to foams, but he managed to present
this conceptual analogy in an exceptionally clear manner, which
contributes to the modernity of his century-old book. In many
ways, Thompson’s ideas came ‘before their time’. Only recently
have physicists and biologists come together to start a new field of
research, now mature, linking cell-level physics with epithelial
tissue structure and development. Particularly since 2004, his ideas
on cell shapes and configurations in tissues have been revisited
with the latest approaches to label the main molecular actors with
fluorescent proteins such as green fluorescent protein (GFP) and to
follow them by fluorescence microscopy in living embryos from a
variety of species (Guillot and Lecuit, 2013; Heisenberg and
Bellaïche, 2013). It is now clear that acto-myosin molecular
motors drive shape transformation of cells and tissues through cell
deformations, using the energy from ATP hydrolysis; cells move
with respect to their neighbours, involving friction forces mediated
by cadherin-based adhesive junctions; cell division and cell
delamination contribute to mechanical stresses (see Glossary,
Box 1), driving tissue convergence and extension, as well as other
cell-mediated phenomena. More generally, it is now accepted that
cell shape and cell-cell interactions and their dynamics can often
be disentangled from cell fate, and generic rules for living matter
can be formulated with new theoretical formalisms (Delanoë-
Ayari et al., 2011; Prost et al., 2015; Popovic ́ et al., 2017). For
example, reinforcements of focal contacts (Riveline et al., 2001)
and cell-cell contacts (Brevier et al., 2007, 2008) illustrate how
mechanical forces mediated by the cytoskeleton regulate cell
adhesion. It might appear too simplistic to capture morphogenesis
in vivo under tight regulation with physical laws of acto-myosin
interactions. However, the striking conservation of the Rho
signalling pathways (Hall, 1998) and their directed control of
acto-myosin activity in vivo from yeast to humans, through C.
elegans, zebrafish and Drosophila, support this vision. Of course,
feedback mechanisms also operate in vivo, but they can often be
identified based on their mechanical and/or signalling origins
(Petridou et al., 2017).

As biophysicists working respectively in inter-cell and intra-
cell physics, we here retrace the story of this field, with its
successes and weaknesses. We revisit Thompson’s seminal
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chapters on plant and animal cell shapes and packing in two-
dimensional (2D) or three-dimensional (3D) tissues, trying to
understand how and why his ideas emerged, and why his book
allowed cross-fertilisation between the developmental biology of
morphogenesis and the physics of living matter. We first explain,
in modern terms, the basic concepts that underlie patterns in
foams and tissues. We then comment on their original
presentation by Thompson, summarising the origin and content
of Thompson’s chapters, and emphasizing his important
observations of four-cell vertices. We discuss the limitations of
his approach, distinguishing scientific breakthroughs from more
descriptive claims. We then critically review subsequent
improvements by his successors. We conclude by recalling the
validity and limits of some analogies, and discuss possible
research directions in developmental biology.

Packing rules in foams and tissues
When a pattern is made of an ensemble of domains tiling the space
without gaps nor overlaps, the rules that dictate the way these
domains are assembled are collectively termed packing rules. They
include three classes: mathematical rules, generally pertaining to all
types of cellular patterns; physical rules, usually referring to
foams that are at mechanical equilibrium (see Glossary, Box 1); and
biological rules, for epithelial tissues.

Counting walls and edges
A branch of mathematics, called topology, deals with properties that
are independent of the size, composition, mechanical equilibration
or physical properties of any cellular pattern. In an ideal 2D pattern
with a large number of cells, if at each vertex there are three edges
that meet (as is the case in a 2D foam, and in several other
2D patterns), the average number of sides of each cell, 〈n〉, is always
close to 6 (see Box 2 for mathematical details; Graustein, 1931;
Weaire and Rivier, 1984). Importantly, this rule does not fix the
number of sides of each cell, i.e. individual cells can have more or
fewer sides.

To characterise the distribution of the cell (or bubble) side
number, since the average 〈n〉 is fixed, it is more useful to focus on
the distribution width, namely the standard deviation Δn. In a
disordered foam, and in several epithelia, Δn correlates with, and
often suffices to predict, the shape of the whole distribution. If Δn is
zero, each cell is a hexagon (although this does not necessarily
imply that it must be a regular hexagon). If Δn is small, there is a

Fig. 1. Foam representations and geometric definitions (Thompson,
1942). (Top) Hexagonal bubbles, with slightly variable sizes, in a 2D foam
(bubble monolayer), here with a free boundary. (Bottom) Meeting of four
bubbles in a foam. Walls meet three by three at 120° along an edge; for
instance, aob (in the plane of the figure), boc (in the front of the figure) and bod
(in the back of the figure) meet along edge ob. In turn, edges meet four by four
at 109.5° at a vertex; for instance, ao and bo (in the plane of the figure), oc (in
the front of the figure) and od (in the back of the figure) meet at vertex o. The
point p represents the projection of vertex o on the horizontal plane bcd.
Reproduced, with permission, from Thompson (1942).

Box 1. Glossary
Interfacial tension. Also called surface tension, interfacial tension
quantifies the tendency of two different materials to reduce their contact
interface area. This is formalised by an energy per unit interface area (a
positive energy, which means a cost), expressed in joules per square
metre, or equivalently by the resulting force acting parallel to the interface
and always tending to reduce it; this force is proportional to the interface
perimeter and is expressed in newtons per metre. It results from
collective interactions between individual constituents (here, cells) and is
defined at a scale larger than its constituents. It applies for instance to:
two different cell aggregates; an aggregate and the outer medium; or two
tissue regions.
Mechanical equilibrium. In the context of cells and tissues during
morphogenesis, mechanical equilibrium refers to a situation in which the
pattern is static and all forces balance each other. In terms of equations, it
can be described by an energy that is minimised. A slow enough
perturbation (here, ‘slow’ means slower than all relevant time scales
inherent to the tissue) is called a ‘quasistatic’ evolution, that is, a
succession of quasi-equilibrated states in which mechanical equilibrium
theorems and energy-based descriptions apply. In situations far from
mechanical equilibrium, movements are described with other equations
not based on energy and its minimisation. Mechanical equilibrium should
not be confused with thermodynamical equilibrium, which means
absence of fluxes of energy and matter, and is a property of inanimate
material or dead bodies.
Mechanical stress. The result, coarse-grained over several cells, of cell-
scale forces between neighbouring cells: pressures, wall tensions.
Stress is a tissue-scale notion, and can be in traction (positive stress in
all directions), in compression (negative stress in all directions), or in
shear (positive in one direction and negative in another).
Topological changes. These are of two types. First, the change in
packing, that is, the change in cell or bubble wall number, also called
rearrangement, intercalation, neighbour exchange or wall swapping.
Second, the change in bubble number, by creation, disappearance or
wall breakage; corresponding processes for cells are division, apoptosis,
extrusion or necrosis. Weaire and Rivier (1984) have shown that, from
the formal point of view of topology, all these processes can be
expressed as combinations of e.g. rearrangement (which they named
‘T1’) and disappearance (which they named ‘T2’) or their inverses.
Wall tension. A force acting within an individual thin wall. It is expressed
in newtons when the wall is a line, as in a 2D foam or tissue, and in
newtons per metre when thewall is a 2D sheet, as in a 3D foam or tissue.
The wall tension can vary, as it depends on the state of traction of the
wall. For instance, it can vanish for a givenwall size, which then is thewall
size at mechanical equilibrium: when the wall is larger, its tension is
positive, and when the wall is smaller, its tension is negative.
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majority of 6-sided cells, with 5- and 7-sided cells in an equally
small number. If Δn is larger, there are 4- to 8-sided cells, with a
peak at n=5 or 6. Finally, if Δn is even larger, the distribution can
become very asymmetric (the lower limit for side number is 3, while
there is no upper limit and cells with more than 9 sides exist): to keep
the average 〈n〉 at 6, there can be more 5-sided than 6-sided cells.

Shapes of walls and edges in foams
In a given foam, all bubble walls are made of the same water
solution containing a small amount of soap, they all have two air-
water interfaces, and all have the same constant, uniform wall
tension, t (see Glossary, Box 1). At mechanical equilibrium, the

foam minimises its total surface energy, which is the surface area
multiplied by t. Whereas a single bubble minimises its area by being
spherical, bubbles assembled in a foam reach shapes resulting from
a compromise that minimises together their total surface area.

Paradoxically, while t is the origin of the foam structure at
mechanical equilibrium, its exact value plays no role whatsoever in
the bubble shape and foam structure. This explains why different
foams share common shapes and properties (Fig. 1). Observations
by Lamarle (1864) and Plateau (1873) led to the following ʻPlateau
rules’ for the mechanical equilibrium of an idealised foam in 2D or
3D (for details, see Weaire and Hutzler, 1999; Cantat et al., 2013).
They were only demonstrated a century later (Taylor, 1976;
Almgren and Taylor, 1976).

The first rule, also called Laplace’s law, is that each wall between
two bubbles is smooth and has a curvature K, which balances the
pressure difference Δp between both bubbles: Δp=tK. As a
consequence, each wall has a uniform curvature (in 2D, it is an
arc of a circle). Another consequence is that when three walls meet
and have the same t, the sum of their curvatures is zero.

The second rule is that walls meet three by three; by symmetry
they form equal angles, which are arccos(−1/2)=120°. The angle
between a bubble wall and a (smooth) solid wall is 90°. This is true
in 2D (Fig. 1, top) and in 3D (Fig. 1, bottom). In 3D, edges meet
four by four, forming equal angles of arccos(−1/3) ≈109.5° (Fig. 1,
bottom).

To fulfil the 120° angle condition, 2D bubbles with 5 sides or
fewer must have walls that are mostly convex, bubbles with 7 sides
or more must have walls that are mostly concave, and bubbles with
six sides have walls that are flat on average. Note that 6-sided
bubbles can (but need not) have flat walls (Fig. 1, top).

Cell wall tensions vary over space and time
The balance of forces in epithelial tissues involves various scales, as
in foams, but it requires a more detailed examination. In several
monolayered epithelia, cell shape and packing are mostly
determined by the balance between two antagonistic effects
(Lecuit and Lenne, 2007; Käfer et al., 2007; Farhadifar et al.,
2007; Hilgenfeldt et al., 2008). First, contractility of the acto-
myosin cortex resists cell deformation and tends to yield regular,
‘roundish’ cell shape. Second, adhesion via cadherin-based
adherens junctions tends to favour contact between cells, and thus
results in cells spreading on each other. It should be noted that other
adhesion structures – such as desmosomes, hemidesmosomes, tight
junctions, gap junctions, focal contacts – also play important roles
(Alberts et al., 2002). Moreover, for a given type of contact, they
differ from species to species (for example, for adherens junctions
see Meng and Takeichi, 2009). However, the main adhesive anchor
to the acto-myosin cytoskeleton between cells is ensured by
adherens junctions, and this simplification allows epithelia from
different species to be considered generically, despite their
variability and the many types of junctions.

At the scale of cell walls, cell-cell mechanical interactions are
described by a cell-cell wall tension and by the difference between
cell pressures. The cell-cell wall tension t is positive and results from
the balance between adhesion and contractility mentioned above. A
simple description based on these ingredients turns out to be a
surprisingly efficient means to describe, and sometimes predict, cell
shapes (Käfer et al., 2007; Hilgenfeldt et al., 2008).

However, the analogy with foams has several limitations
(discussed further below in the section ʻSince 2004: modern
renewal of the field’). First, if there are two different cell types A and
B, there are five different wall tensions: two between same cell

Box 2. Walls and edges
In 2D, Euler (Cromwell, 1999) found a relationship between the total
number of cells or bubbles (N) and their numbers of walls (Nwalls) and
vertices (Nvertices):

N � Nwalls þ Nvertices ¼ xEuler :

This relationship is difficult to demonstrate but easy to check by simple
counting. Here, the constant χEuler is a small integer number. It is typically
1, but may be 0 or 2 if the pattern is contained in a closed box or has a free
surface. Importantly, this constant does not change if cells or walls are
added or removed; for instance, when a cell divides, dies or changes
neighbours.

A remarkable consequence of this formula was found by Graustein
(1931). Denoting 〈n〉 the average of the number of walls of the cells
(which in 2D is the same as their number of vertices), and 〈z〉 the average
number of edges which meet at a vertex, we have:

Nwalls ¼ knlN=2;

Nvertices ¼ knlN=kzl:

When N is much larger than χEuler (which, as noted above, is typically
1), 〈n〉 and 〈z〉 are related:

1=knlþ 1=kzl = 1=2:

Hence, in an ideal 2D pattern with a large number of cells, if at each
vertex there are three walls which meet, 〈n〉 is always close to 6. More
precisely, 〈n〉 is equal to 6, less a small correction that depends on the
periphery of the foam and on N:

knl ¼ 6ð1� xEuler=NÞ:
In a real foam there are other, generally small, corrections, due for

example to round corners between bubbles. In a real tissue, there is
another generally small correction, if several cells meet by four instead of
three.

Let us now turn to 3D. Cauchy (1813) and L’Huilier (1812-1813)
extended Euler formula and established a relationship between the total
number of cells or bubbles (N), and their numbers of walls (Nwalls), edges
(Nedges) and vertices (Nvertices), defined in Fig. 1, bottom:

� N þ Nwalls � Nedges þ Nvertices ¼ xEuler :

One of the consequences of this relationship is that for each individual
3D cell, there is a link between its number of walls,Nwalls, and its average
number of edges per wall, 〈e〉. If, at each edge, there are three walls that
meet (as is the case in a foam, and in several other usual patterns), a
simple counting argument implies that:

6� kel ¼ 12=Nwalls:

Whether the number of walls is very small or very large, 〈e〉 is thus
always strictly less than 6. Put another way, no 3D cell has only
hexagonal walls; there must be some walls with fewer edges. As an
analogy, a soccer ball has, among white hexagons, exactly 12 black
pentagons.
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types, tAA or tBB; one for dissimilar cells, tAB; and the two wall
tensions of A and B with the medium, tAm and tBm. Second, due to
cytoskeletal activity powered by ATP hydrolysis and regulated by
the Rho GTPases, cell walls fluctuate in position: only in average
can their shape appear as almost at mechanical equilibrium. Third,
and most important, cell wall tensions depend on cell shape, so that
cell shape and wall tension feedback on each other.
As a consequence, cell wall tensions are usually neither uniform

in space nor constant in time. When cell shape is controlled by wall
tension and pressure, Laplace’s law holds, walls have an uniform
curvature, and angles reflect mechanical balance between wall
tensions. However, the rule of 120°, as well as the rule that walls
which meet have curvatures of sum zero, are only approximate for
cells, the approximation being better if all cell walls have a similar
tension value. Fourfold vertices, although less frequent than
threefold ones, can be observed under some circumstances in 2D
tissues (see below), unlike in 2D foams. Energy minimisation can
remain a good approach to predict shape, but the energy involves
adhesion and cortex contractility (Ouchi et al., 2003; Käfer et al.,
2007; Hilgenfeldt et al., 2008), so is less simple than the energy in
foams which is proportional to the total surface area of cell contacts.
In summary, tensions in cell walls arewell defined but can vary in

space and time, so that cell shapes are similar to bubble shapes but
much more varied.

Thompson’s chapters ‘The Forms of Tissues, or Cell-
aggregates’
Having laid the groundwork with the mathematical and physical
principles, we now comment on how Thompson presents these
rules, and why. In the revised edition (Thompson, 1942), to which
all page numbers here refer, chapter VII comprises 100 pages. It
mostly deals with cell shape, wall tension and surface area
minimisation. It is entitled ʻThe Forms of Tissues, or Cell-
aggregates’. Chapter VIII, almost as long and curiously entitled
ʻThe same (continued)’, examines how surface area minimisation
affects cell division and growth.

Interdisciplinary influences at the origin of these chapters
As early as 1889, Thompson had already began to work on
mathematics; he wrote to a student: ʻI have taken to Mathematics,
and I believe I have discovered some unsuspected wonders in regard
to the Spirals of the Foraminifera’ (Thompson, 1889; Jarron, 2017).
Can we identify some scientists who have influenced him in this
direction?
At this date, Anatole-Henri-Ernest Lamarle and Joseph-Antoine-

Ferdinand Plateau had recently published their works on soap
bubble shapes (Lamarle, 1864; Plateau, 1873). By 1917, Plateau
was well known, as was Henri Bénard and his work on flow patterns
in liquids heated from below. Thompson duly quotes them in these
chapters. Since Plateau was dead, Thompson’s source could have
been Lord Rayleigh, who was working on the subject while
Rayleigh and Thompson were simultaneously at Trinity College,
Cambridge (I. Falconer, personal communication). In addition,
Thompson exchanged numerous letters with Plateau’s son Félix, the
zoologist; however, they discussed the museum specimens more
than bubbles (M. Jarron, personal communication).
The French biologist Stéphane Leduc (a contemporary of

Thompson) had an agenda to reproduce biological patterns, such
as trees, flowers or tissues, using only physical and chemical
materials. Thompson quotes Leduc and reproduces his pictures.
There seems however to have been no reciprocity, although Leduc
perceived he had a better audience in the UK than in France (Keller,

2002); despite their similar interests and the close temporal
proximity of their publications, Leduc and Thompson apparently
did not correspond (M. Jarron, personal communication).

Later, Frederic T. Lewis, heavily influenced by Thompson’s
1917 edition, underwent a thorough analysis of cell shapes and
packings. In 1923 he sent an article to Thompson (Thompson, 1923)
and they corresponded intensively up until Thompson’s death;
Lewis received a visit from Thompson in 1936 (M. Jarron, personal
communication). The material provided by Lewis strongly
influenced the 1942 edition.

William C. Graustein demonstrated in 1931 that cells tiling a
plane without gaps or overlaps have six sides on average (Graustein,
1931). Lewis, who was his colleague at Harvard, wrote twice to
Graustein, around 1923 and in early 1940 (as mentioned in Lewis,
1940, 1943). However, Thompson does not seem to have been
much interested in Graustein’s work: in the 1942 edition, he quotes
this article in passing (p. 516), incorrectly writing the name as
ʻGoldstein’, and no letter between them has been found. Thompson
also overlooks Graustein’s sources: he quotes Euler only on other
subjects, and quotes neither Cauchy nor L’Huilier.

Thompson’s approach
Despite the title of these chapters, Thompson does not investigate
the forms of tissues and cell aggregates by themselves (except for
the shape of a compressed foam, p. 506 for instance). Rather, he
investigates in detail the forms of cells within tissues and cell
aggregates.

In line with the whole book, this chapter is a synthesis of
enormously wide scope in terms of the forms and organisms
considered, questions asked, and ideas drawn upon. The text is
abundantly illustrated, containing as many figures as the six
preceding chapters together, with photographs and careful drawings
from his own work and from decades of others’ observations. He
reports cellular patterns from inert to living matter: packed soap
bubbles or oil drops; flow patterns in a liquid heated from below;
cracks in dried clay, basaltic lava, or porcelain bowls; patterns in
frogs eggs and the wings of fly and, with a special emphasis,
honeycombs.

To interpret such a variety of patterns, he proposes a simple,
unified, quantitative framework. He documents and emphasizes the
striking analogies between cell shapes and patterns for foams and
tissues: ʻwe see the cell-walls everywhere meeting, by threes, at
angles of 120°, irrespective of the size of the individual cells’
(p. 487). Among many physical parameters, he mostly emphasizes
the importance of surface tension and pressure differences.

To support his vision he provides some theoretical
demonstrations, deriving equations, some of which are
geometrical (e.g. demonstrating values of angles), and frequent
visual analogies. For example, he explains the rules about numbers
of sides (pp. 515-517), shapes of walls in 2D (pp. 464-475, 483-
487, as well as p. 596 for cell divisions) and in 3D (pp. 496-499,
549-552). He also outlines exceptions when needed (for example,
see below). Another patient observer wrote to him: ʻI marvel at the
care with which you must have gone through the material that was
sent to you’ (Matzke, 1948). This suggests that he was indeed
carefully considering each single specimen but, perhaps for the sake
of clarity, he seems to have purposely selected some simplifications
first before progressing to more detailed explanations.

The case of the four-cell vertex
In biological tissues he observes four-cell vertices (Fig. 2, top),
which, as he explained, are unstable in foams. He discusses the case
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in 2D (pp. 486-493) and later in 3D (pp. 557-560). Facing this
important exception to the foam-tissue analogy, he writes (p. 491):

ʻI was wont to attribute to error or imperfect observation all those cases
where the junction-lines of four cells are represented [Fig. 2, top] as a
simple cross. As a matter of fact, the simple cross is no very rare
phenomenon, even in the frog’s egg; but it is a transitory one, and
unstable. Viscosity and friction may enable it to endure for awhile, but the
partitions inevitably shift into the stable, three-way, configuration. In such
a case, the polar furrow manifests itself slowly and as it were laboriously;
but in the more fluid soap-bubble it does so in the twinkling of an eye.’

He emphasizes that this is a difference in degree, not in quality,
since in both cases the duration is non-zero.
On the one hand, it seems that Thompson recognises that the

foam-tissue analogy, which underlies the whole explanation of cell
shapes by surface tension, fails in the current case. He attempts at
hand-waving to reconcile his observation and his intuition. His
somehow self-contradicting usage of words such as ‘stable’ and
‘unstable’, here and in other places, might be disputed by a
theoretical physicist.
On the other hand, for an experimentalist, these approximations

are understandable at a stage when the focus is the discovery of the
phenomenon itself. Along these lines, Thompson performs several
important observations: (1) he identifies the location within the

tissues where relevant phenomena occur and draws only the
meaningful traits; (2) he compares them to the similar configuration
in foams; (3) he deduces a difference in dynamics; (4) he proposes
that viscosity and friction in tissues are responsible for this
difference. He even envisions the potential dynamics of these
peculiar vertices in another scheme where he draws the ʻvarious
conjunctions of the first four cells in a frog’s egg’ (Fig. 2, bottom).

In summary, Thompson’s penetrating intuition and pioneering
observations recognise the importance of four-cell vertices, but his
interpretations need to be reworked in modern times, as discussed
below.

Limitations of Thompson’s work
As noted above, Thompson’s work, although influential, does have
a number of limitations. Here, we discuss key caveats with these
chapters, many of which come from Thompson’s quest for simple
explanations, which sometimes led him to imprecisions.

The search for order and perfection
As James A. Glazier commented (Glazier, 1989):

ʻThe fundamental weakness of Thompson’s approach, which carries over
to later writers as well is an obsession with the crystal, with a regularity
and symmetry which he assumed to be the Platonic form for imperfect
natural structures. Sir Thompson had no room for probability in his

Fig. 3. Cells with sinuous walls.
Whatever their shapes (a-c), and despite
their fundamental difference from regular
hexagons, as long as their walls meet
three by three their average number of
sides is six (Weaire and Rivier, 1984;
Carter et al., 2017). Reproduced, with
permission, from Thompson (1942).

Fig. 2. Arrangements of four cells. In all schemes,
the contours of cells and their meeting points are
extracted and drawn from actual experiments, and
their specific shapes are proposed to be informative for
the organisation and dynamics of the tissue. (Top) The
four-cell vertex (A) and a relaxed state (B) observed in
bubbles and cells. (Bottom) Various configurations (A-
C) in a frog’s egg. Reproduced, with permission, from
Thompson (1942).
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ordering of the natural world. For him, disorder was merely a deviation
to be characterised and dealt with as an unavoidable inconvenience, but
not of interest in itself.’

Thompson marvels at ʻthe widespread appearance of the pattern
of hexagons’, while in reality the only rule is that cells have six
sides on average (in patterns with threefold vertices, see above
and Box 2). He shows photographs of Stéphane Leduc’s
ʻartificial tissues’ obtained by diffusion of a coloured liquid in
a less dense one (p. 501) as if they were a beautiful illustration of
perfectly symmetrical regular hexagons, although in practice cell
shapes are visibly irregular and some pentagons appear. He
underlines the universality of 120° angles (p. 487), which is
correct in foams, whereas significant deviations from 120° are
frequent in cells. He presents a compressed foam drawn as if it
were a crystal-like pattern of regular hexagons (p. 506), whereas
the reality must have been far from it. On the same picture, the
bubble walls at the outer surface of the foam are drawn as
flattened, which he probably knows is wrong, since he correctly
draws them curved on another figure (Fig. 1, top). However,
despite occasional confusions between hexagons and regular
hexagons, he distinguishes them when needed, quoting examples
of extreme differences (Fig. 3).

The search for an optimal, unified explanation
Throughout his work, Thompson usually assumes there is one, and
only one, explanation, and favours the simplest hypothesis. This
search for parsimony, typically reminiscent of Ockham, is valuable
in physics, and also in biology whenever it is experimentally
testable and refutable. However, its general application to biology
without control can lead to dead ends.
On the one hand, a physical determinant such as tension could act

during the development of an individual. On the other hand, an
optimisation principle such as area minimisation could act during
trait selection. This ambiguity between ontogeny versus phylogeny
is hidden throughout the text and is never clarified.
Thompson suggests that tension explains the observations he

reports. He also honestly alludes to the possibility of other
explanations, in addition to tension or instead of it. However, he
seems to be biased in his choice of samples – quoting more
examples than counterexamples. The effect is to make the reader
believe that tension is the general determinant of cell shape.
Approximate claims arise in several places. In most cases,

Thompson does correct them in passing later in the book, but since
the information is dispersed through the chapter, this correction is
not always perceived by the reader. Some of his statements are valid
only in 2D, some only in 3D, and some are valid in both, but this is
not always clearly stated. The same applies for ordered versus
disordered patterns; or for patterns with finite versus infinite (or
periodic) boundary conditions; or for patterns with constant uniform
tension, such as in foams, versus variable heterogeneous tension,
such as in tissues. He often considers visual analogies as if they
provided evidence of a common underlying causal mechanism. In
mathematical demonstrations, he enjoys pedagogical shortcuts,
even when he knows the complete and correct demonstration
(pp. 485, 515-516).
For instance, in 2D, Thompson considers each cell wall as an arc

of a circle. However, sinuous cell walls exist (Fig. 2, bottom, B):
these cannot have been shaped by cell wall tension and cell pressure
differences only. Other factors, such as bulk cytoskeleton, viscous
dissipation or extracellular matrix, may contribute to determine cell
shapes. An expert eye can also detect that factors beyond wall

tension and pressure intervene, by looking at angles or curvatures;
for instance, if three cell walls that meet have curvatures that do not
sum up to zero, at least approximately. Thompson recognises that
some cells are so sinuous that another explanation is required. For
animal cells (Fig. 3a) he suggests an analogy with the wrinkles in a
compressed rubber sheet, which physicists would call a buckling
under negative tension: this is far from being the only possible
explanation. For plant cells (Fig. 3b,c) he is more cautious, writing
that it is ʻanother story, and not easily accounted for’. Note also that,
in 3D, Thompson treats each bubble or cell wall under tension as a
portion of a sphere; this is approximately true since each wall has a
constant mean curvature, but, except when symmetry imposes it, it
is not a general rule.

On the very first page of chapter VII a confusion appears
between wall tension, at cell scale, and interfacial (or surface)
tension (see Glossary, Box 1). Such confusion is natural for
persons acquainted with foams, where both concepts happen to
overlap by coincidence, since the wall tension is equal to twice the
air-water interfacial tension. It is reinforced by the fact that wall
and interfacial tensions obey the same laws of balance at
mechanical equilibrium. This has contributed to a long-standing
confusion between the two concepts, with ʻsurface tension’ often
used instead of ʻwall tension’.

Moreover, in using the word ʻtension’, Thompson refers both to
tension in a material bulk and at an interface: that is, to liquid
materials, which have an interfacial tension, and to solid materials
such as adult animal or plant tissues, with their bulk elastic tension
or fractures. Despite this confusion between wall tension and
interfacial tension, these patterns are all static and in mechanical
equilibrium, and so the concept of tension makes sense. This is not
the case for the figures of sand grain accumulations on vibrating
plates (p. 472), diffusion of a coloured liquid in a less dense one
(p. 501), or flows in liquids heated from below (p. 504), which all
result from dynamic movements and are not subject to any type of
tension. In short, Thompson treats different systems collectively by
their patterns, as if the underlying physics were the same, which is
not the case.

Altogether, Thompson seems guided by intuition, and his text
might not pass a peer-review filter of modern times. However, as a
pioneer and as a source of inspiration for others, his influence still
lasts, as we now discuss.

Thompson’s influence over the past 100 years
We chronologically retrace four different phases (corresponding to
slightly overlapping periods) of Thompson’s legacy since 1917. In
each period, we review how physical mechanisms are invoked to
explain cell shapes and packing.

Although Thompson’s work has clearly been influential in this
field, only some of the papers listed below explicitly quote On
Growth and Form. Even if they quote it, is it more often for a general
statement in the introduction, rather than for a specific result. The
motivations of the studies discussed fall into four classes:
description of packing and shapes; roles of mechanical stress and
forces such as pressures and tensions; energy minimisation in
analogy with foams; and, more broadly speaking, physical
approaches to biological patterns.

∼1920s to 1970s: descriptive observations of cell shapes and packing
– a search for general laws
In the decades following publication of On Growth and Form, four
researchers were particularly active in promoting Thompson’s
approach and keeping his ideas alive.
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Lewis, heavily influenced by the 1917 edition (see Box 3),
followed Thompson on all four classes defined above. He engaged
in a long-term, thorough descriptive investigation of cell packing
and shapes in 2D and 3D, in animals and in plants. He was fond of
visual analogies between tissues and foams, and was looking for
perfection in patterns, which did not prevent him from carefully
recording actual observations. This resulted in an abundant body of
work, mostly remembered for his remark that large cells tend to have
more sides than small cells do (see e.g. Lewis, 1928, 1948; for
reviews see e.g. Chiu, 1995; Glazier, 1989).
At Columbia, Edwin B. Matzke, inspired by the second edition

(Box 3), analysed and demonstrated experimentally the role of wall
tension in 3D plant cells. He undertook painstakingmanual searches
and observations of 600 3D bubbles, looking for the ordered
patterns or regular bubble shapes put forward by Thompson
(Matzke, 1945, 1946). Having failed to detect them, and having
rather proved the prevalence of disorder, he jokingly warned of the
dangers of leaping from mathematical models to real-world
conclusions ʻin the twinkling of an eye’ (Klarreich, 2000).
Malcolm Steinberg focused on cell-sorting experiments, in which

two aggregates made of different cell types are placed in contact;
they can separate, touch, mix, or one may surround the other. By
building upon Johannes Holtfreter’s notion of cell affinity
(Holtfreter, 1939) that could drive cell movements (Townes and
Holtfreter, 1955), Steinberg proposed that these mutual
arrangements are driven by differences between homotypic and
heterotypic adhesion: the so-called ʻdifferential adhesion
hypothesis’. The key underlying idea, which Steinberg promoted
until the 2000s, was that all cell-cell interfaces, despite their
varieties, could be quantified by a single number (measuring their
adhesivity), compared and ordered (Steinberg, 1963; Foty and
Steinberg, 2005). This assumption was disputed by Albert
K. Harris, who rather emphasized the role of differences in cell
wall contractility (Harris, 1976). This debate has only recently been
resolved, as discussed further below.
Finally, Hisao Honda developed multiscale studies linking cell

packing with tissue dynamics. He introduced bottom-up computer
simulations of cell assemblies and their dynamics by neglecting
most details of cell contents and shapes, except for their polygonal
nature; a cell was represented by its centre, the line midway between
two cell centres representing the cell wall (Honda, 1978). In parallel,
he tracked individual cell shapes and movements within various
epithelial tissues (for a review, see Honda and Nagai, 2015).

Between them, these four researchers, along with others, developed
the ideas laid out in chapters VII and VIII of On Growth and Form,
which were otherwise largely ignored by the broader cell and
developmental biology communities for many years.

∼1950s to 1990s: exchanges of ideas with foam physics
Meanwhile, Bragg and Nye (1947) had produced picturesque
photographs of orderly assembled bubble monolayers floating at the
surface of water, and used them to teach crystal structures. Together
with the natural history descriptions of Lewis and Matzke, these
pictures have influenced the modern study of foam physics,
launched by the metallurgist Cyril Stanley Smith (Smith, 1952).
The physics of foam structure became an active field of research (for
reviews, see Glazier, 1989; Weaire and Hutzler, 1999; Cantat et al.,
2013). It was during this time that Thompson’s followers developed
the bases that were later taken up by developmental biology (also
discussed further below).

A toolbox for statistical description of cell assemblies
Researchers first investigated 2D packing of several bubbles
(Weaire and Rivier, 1984; Rivier, 1991). They quantified
distributions of cell size and number of sides (Rivier, 1991), as
well as their spatial correlations and their disorder (Rivier, 1994);
change in packing or in bubble number, also called ʻtopological
changes’ (see Glossary, Box 1) (Weaire and Rivier, 1984); and cell
shape (Graner et al., 2001). David A. Aboav and Denis Weaire
observed that when a cell has many sides, its neighbours tend to
have few sides, and vice versa (for reviews, see Rivier, 1994; Chiu,
1995). Rather than looking for perfection, these studies emphasized
the importance of disorder and correlations in actual patterns. Some
were extended to 3D (Avron and Levine, 1992; Klarreich, 2000).

Computer simulations of disordered assemblies in 2D or 3D
The ʻPotts model’, in which surface energy is minimised while all
bubble shapes are described in detail with as many pixels as in
experiments, was adapted for cells in 1993 (Glazier and Graner,
1993). A cell contour changes when one of its boundary pixels is
assigned to another cell, and suchmovements are executed in order to
decrease an energy designed tomimic the cell-scale ingredients. This
model captures in detail the cell contour fluctuations when the cell
wall is ‘floppy’ (Magno et al., 2015). Two other models for bubbles
were introduced around this time. First, ʻthe Surface Evolver’ is
similar in principle to the Potts model, with wall discretisation being
refined as much as is needed to obtain a better accuracy in
equilibrated bubble shapes (Brakke, 1992). Second, in the ‘vertex
model’ each vertex is a point that moves according to prescribed
forces (Nagai et al., 1988), and vertices are connected by straight lines
to defined polygonal bubbles. Such a model can incorporate friction
and viscosity, and thus can simulate a rapid dynamic evolution.

During this period,we feel (on the basis of numerous conversations)
that the rare attempts by mathematicians and physicists to apply their
results to biology, in the style of Thompson, were rarely successful.
They were often received coldly by biologists, who in turn were not
motivated to apply such principles in their own work. A turning point
was reached when Masatoshi Takeichi, a specialist of cell adhesion,
validatedwith Steinberg the possibility of quantifying cell adhesion in
agreement with the differential adhesion hypothesis (Steinberg and
Takeichi, 1994).

Since 2004: modern renewal of the field
As experimental techniques were developed that allowed
researchers to fluorescently label proteins involved in

Box 3. Thompson’s influence
Thompson’s immediate influence and the intensity of debates are
illustrated in some of the letters that he received:

‘I am coming to realize that your book is regarded as the last word
on the subject of cell shape. Unless I can point to some difference
there, I can not obtain a hearing!’ (Lewis, 1925)

‘Of course, it [the book] presents problems and raises issues on
which opinions differ in lively fashion. […] At Columbia [Matzke
team] they have worked assiduously at this problem, and … your
Growth and Form was the primary incentive.’ (Lewis, 1942)

‘It must be a satisfaction to you to realize that the work on cell
shapes which has gone on in the last several decades has resulted
from the stimulating discussion which you presented in the first
edition of your book in 1918.’ (Matzke, 1948)

4232

REVIEW Development (2017) 144, 4226-4237 doi:10.1242/dev.151233

D
E
V
E
LO

P
M

E
N
T



morphogenesis and to image them in living and developing
embryos, new questions and needs arose in developmental
biology. Alongside the advances in foam physics (see above), this
created a situation in which physicists and developmental biologists
were ready to join their efforts. In 2004, in the space of under four
months, three groups published pioneering articles using
Drosophila and its genetics that revived and renewed Thompson’s
approach. Bertet et al. (2004) linked germ band extension of the
embryo with changes in cell contacts, in turn due to an increase in
cell wall tension that was related to the local enrichment of cell walls
in myosin II. Hayashi and Carthew (2004) observed visual analogies
between cell packing in retina ommatidia and soap bubbles,
including in mutants of cell numbers or of adhesion molecules.
Zallen and Zallen (2004) compared the distributions of the numbers
of cell sides in normal and mutant embryos: they showed that some
results from foam packing were general enough to be transposed to
tissues almost without adaptation.
Starting with these papers, biologists and physicists began to

combine their questions, and developmental biology expanded
beyond the gene-centric view that had been dominant over preceding
years. They jointly searched for mechanisms to explain numerous
old and newer observations, bridging scales from nanometer-scale
molecular motors to tissue-scale readouts. For example, cell
morphology studies involved the quantitative description of cell
packing (Classen, 2005; Gibson et al., 2006), cell elongation and
changes thereof (Graner et al., 2008), and were also extended to
plants (Hamant et al., 2008). Live imaging of tissue with GFP-fused
proteins inwild-type strains and inmutants enabled kinetic studies in
developing organisms (Blankenship et al., 2006; Rauzi et al., 2008;
Butler et al., 2009). This period was marked by interdisciplinary
review articles (e.g. Lecuit and Le Goff, 2007; Hutson and Ma,
2008; Oates et al., 2009) and by the appearance worldwide of new
interdisciplinary teams, articles, meetings and courses.
Adapting results regarding bubble shapes to biological contexts

required some effort, addressing three debates dating from
Thompson: (1) do cells in epithelia minimise their surface area,
like in foams, implying that all cell walls have the same tension
(Hayashi and Carthew, 2004); (2) are cell-cell contacts dominated
by the role of adhesion (Steinberg, 1963) or cortical contractility
(Harris, 1976); (3) can four-cell vertices last and be stable (see
above)? These questions were solved together, when the idea that
both adhesion and cortical contractility simultaneously contribute to
cell wall tension (see e.g. Brodland, 2002; Ouchi et al., 2003)
reached a consensus. Four contemporary articles (Lecuit and Lenne,
2007; Käfer et al., 2007; Farhadifar et al., 2007; Hilgenfeldt et al.,
2008) showed that the tension, t, in a cell wall should not be reduced
to adhesion only; in fact, adhesion usually has a negative
contribution to t, which is made positive by the contribution of
cortical contractility.
The interfacial tension TAB=tAB−(tAA+tBB)/2 between aggregates

made of cell types A and B results from the difference between the
heterotypic wall tension tAB and the average of the homotypic wall
tensions tAA and tBB; similarly, with the medium: TAm=tAm−tAA/2
and TBm=tBm−tBB/2 (Graner, 1993). It is this interfacial tension that
drives cell-sorting and the formation of boundaries between
different tissue regions during morphogenesis (Fagotto, 2014). A
larger interfacial tension between two aggregates, A and B, leads to
partial or complete detachment. A larger interfacial tension between
aggregate A and the outer medium results in B engulfing A. When
the interfacial tension between A and B vanishes, they mix. This
could be called the ʻdifferential wall tension hypothesis’ or,
equivalently, the ʻinterfacial tension hypothesis’.

The analogy with foams thus applies, in the sense that cell
packing can be described as being in mechanical equilibrium, with
its shape minimising an energy. However, the analogy is limited;
since cortical contractility is larger when the cell is deformed, the
wall tension itself must be variable. Thus, the energy that the cell
shape minimises is not just proportional to the contact surface area.

Nurturing exchanges to and from foam physics, this period
revised and critically discussed former empirical observations.
Rather than the correlation between cell side number and area
suggested by Lewis, it can be the cell radius that helps predict cell
side number (Hilgenfeldt, 2013; Durand et al., 2014) and the
proportion of hexagons (Hilgenfeldt, 2013). The standard
deviations of cell sizes and cell side numbers correlate (Durand
et al., 2014). Also, the Aboav-Weaire anti-correlation between
neighbours (see above) has been used to quantify the assembly
disorder (Cantat et al., 2013).

In the spirit of Thompson’s idea that physical mechanisms
explain cell shape or dynamics, several possible 2D or 3D
representations of cell assemblies on a computer have been
introduced (Maclaren et al., 2015; Sharpe, 2017). In addition to
the Potts model, there have been adaptations to epithelial tissues of
the vertex model introduced by Honda (Nagai and Honda, 2001;
Honda andNagai, 2015), which improve on his former attempts, and
of the Surface Evolver (Hilgenfeldt et al., 2008). These simulations
could be validated against experiments, enable interpretations, and
suggest how a cell-level mutation affects the tissue-level phenotype.
Simulations also fit experimental data to infer the measurement of a
parameter (Rauzi et al., 2008) and even sometimes lead to testable
predictions (Krieg et al., 2008; Bardet et al., 2013).

Although the basic principles from foam physics apply to tissues,
some theorems do not translate. As mentioned above, in 2D, cell
walls are arcs of circles as in foams, but when three walls meet at a
vertex their angles are not necessarily 120° (whereas they are in
foams) and the sum of their curvatures is not necessarily zero (in
contrast to in foams). More importantly, four- and even five-cell
vertices can be observed for a long time and in large numbers, both
in experiments and in computer simulations (Blankenship et al.,
2006; Bardet et al., 2013); in fact, theoretically, under some
circumstances they can be stable (Tamada and Zallen, 2015;
Spencer et al., 2017). Finally, during development soft cell walls
may rigidify, and the adult pattern retains only reminiscences of the
mechanisms that affected the course of its development (Fig. 4).

In summary, image analysis based on modern microscopy,
complemented with genetics experiments and computer
simulations, led to a better understanding of the analogy between
foam and tissue patterns, both described as resulting from wall
tension. It also clarified the limits of the validity of this analogy:
since the tensions of cell walls are not constant, some theorems valid
in foams are only approximate, or wrong, in tissues.

The current state of the field: dynamical studies
The recent period has seen the introduction of exhaustive studies of
cell processes and their effects on whole-tissue morphogenesis.
Theoretical physics models with computer-aided data analysis and
predictive models have been combined with genetics and live
imaging of tissue dynamics across several scales (Etournay et al.,
2015; Guirao et al., 2015). These studies have led to the
determination, beyond visual analogies (Savin et al., 2011), of
causal mechanisms for cell packing (Salbreux et al., 2012) and cell
rearrangements (Guirao and Bellaïche, 2017).

Such merging of theoretical physics and morphogenesis dynamics
increasingly relies on mechanical measurements of forces
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(Heisenberg and Bellaïche, 2013), stiffness and viscosity (Serwane
et al., 2017). Biology and physics have also combined their tools to
manipulate and to measure these quantities. Several techniques, each
with several variants, are currently tested to probe mechanical forces
and stresses within living tissues: contact manipulation, manipulation
using light, visual sensors, and non-mechanical observation
techniques (Sugimura et al., 2016; Campàs, 2016).
Most of these techniques are in the spirit of Thompson, but this is

particularly true for one of them: force inference (Ishihara and
Sugimura, 2012; Chiou et al., 2012; Brodland et al., 2014). This
consists of measuring cell wall shapes and angles, then explicitly
assuming that they are determined solely by mechanical equilibrium
dictated by the balance of cell wall tensions and cell pressure
differences, to eventually infer wall tensions and pressures. When
three walls meet at unequal angles, one can infer that their tensions
should be unequal; the difference between observed angles and
120° provides information on the ratios of wall tensions. This can be
implemented on thousands or millions or cells and generate space-
time maps of mechanical stress fields within a developing tissue
(Guirao et al., 2015).
In chapter VIII of On Growth and Form, Thompson echoed an

already long-standing debate on what determines the orientation of
symmetric cell division: a purely geometrical rule, where division
occurs along the long cell axis, a principle of energy minimisation
possibly controlled by tension, or an effect of mechanical stress
orientation? The predictions of these three hypotheses usually
coincide, making it difficult to disentangle them. However, a series
of recent articles has addressed this question, indicating that all three
canparticipate, probablywith a dominant role of cell shape, encoded in
molecular signals, and an indirect effect of stress (which in turn orients
the cells) (Besson and Dumais, 2011; Minc et al., 2011; LeGoff et al.,
2013; Campinho et al., 2013;Wyatt et al., 2015; Bosveld et al., 2016).
Thus, with force measurements complementing image analysis,

Thompson’s intuition about the role of mechanics can progressively
be experimentally tested in various contexts, including the
orientation of divisions. Reciprocally, forces can sometimes be
inferred from image analysis.

Conclusions
Why did developmental mechanics take a century to flourish?Many
factors probably contributed and only ideas can be suggested at this

stage. The genetics and molecular biology approach has facilitated a
revolution in our understanding of living matter and this became the
almost exclusive focus of the developmental biology community.
Since mutants could predictively change the shapes of cells, tissues
and embryos, there was no real need after the 1950s to look with
interest at the mechanics of the system. The sequencing of whole
genomes probably also contributed to challenging the hypothesis
that limited sets of genes could satisfactorily explain shape.

However, the lack of physical explanations began to be felt.
Meanwhile, physics changed: ‘soft matter’ physics flourished in the
1960s and thereafter, and opened the way to the physics of living
matter. Quantitative and predictive models appeared for
reconstituted systems such as lipid vesicles and membranes; cells
and tissues came next as a natural consequence. Experiments with
physics designs and hypotheses appeared on living matter, first at
the cell scale. In addition, developmental biology as a field has
culturally deep roots in the engineering community (e.g. Wolpert,
1969; Brodland, 2002), and is probably receptive to accounting
the contribution of mechanics in morphogenesis. This convergence
of scientific interests set the stage for the modern renewal of the
field.

Summary: considering Thompson’s legacy…with due care
Over the 100 years since the publication of On Growth and Form,
there has been a continuous lineage of ideas and research based on
the hypotheses introduced by Thompson that were sometimes, but
not always, made explicit. His legacy currently stimulates active
research in which developmental biologists and physicists join their
efforts. A century later, Thompson’s intuitions are vivid in
researchers’ minds: for example, at least two articles have even
included ʻon growth and form’ in their title (Hutson and Ma, 2008;
Savin et al., 2011); while Brodland et al. (2014) chose Thompson’s
dragonfly wing picture (Fig. 4) to illustrate how their force inference
method works. The effect of mechanical forces on gene regulatory
pathways to specify cell fate is recognised as a contribution to robust
tissue patterning during morphogenesis (Chan et al., 2017).

Overcoming disciplinary barriers, as a theoretician, Thompson
provided guiding concepts of physics for living matter, and, as an
observer, he taught researchers to perceive carefully what the system
does. His idea that forces, and especially contact forces (wall
tension, pressures), act to assemble cells and determine tissue
shapes is now a generally accepted explanatory mechanism yielding
testable predictions. Both adhesion and cortical contractility have
been shown to contribute to cell wall tension. As cortical
contractility depends on cell shape, shape feedbacks on wall
tension, which is not uniform. Cells minimise an energy, which is
not strictly proportional to wall surface area, and fourfold vertices
can sometimes be stable. Tissue stress affects cell shape and
orientation, which in turn affect wall tension and division
orientation.

However, analogies between tissues and foams or liquids,
whether regarding their packing or their flow, should not all be
taken at face value. Each analogy has a limited domain of validity,
and although some of them reach far enough to be fruitful and
predictive, most are only valuable for the methods and approaches
that they suggest. As a pioneer, Thompson certainly made
approximations and simplifications. His search for order and
perfection has had to be replaced by characterisations of actual
disorders and imperfections, which is scientifically as rewarding.
Matzke, among others, has experimentally demonstrated the
dangers of leaping from mathematical models to real-world
conclusions (Klarreich, 2000).

Fig. 4. Adult dragonfly wing with visible veins, visualising contours of
former cells from which they originate. Reproduced, with permission, from
Thompson (1942) (not present in the 1917 edition).
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Other oversimplifications have been propagated throughout the
literature. We warn that intuitive correlations, such as those
observed by Lewis, Aboav and Weaire regarding the relationship
between the numbers of sides of neighbouring cells, should not be
instilled as rigid ʻlaws’. Computer simulations are powerful only if
they are used in line with the question under consideration, keeping
in mind their specific advantages and drawbacks, as well as their
underlying hypotheses. Force inference should be used only within
a context in which its hypotheses are valid. The important role of
tensions and their differences in shaping cells and tissues will
benefit from recognising the distinction between wall tension and
interfacial tension.
While Thompson’s principles certainly guide intuition and

suggest research directions, we must apply them, and/or
generalise them, only with critical examination, and using
standard experimental control methods.

Perspectives: extending Thompson’s legacy
A century after the writing of the book, Thompson’s vision can be
revisited with fresh eyes. The main molecular actors are known
(acto-myosin, cadherin, the Rho signalling regulatory pathways),
the physics of living matter has matured, and mathematical models
of tissues can be implemented using computers. Shapes can be
followed in developing embryos over long time-scales with cellular
resolution and quantitative measurements of cell shapes, protein
densities and localisations, and local and global rheological
measurements. The coming years should see the emergence of
predictive models testing experimental readouts, such as adhesion
and motor protein density and localisation, cell and tissue shapes,
cell sorting, and local and global mechanical characterisations.
This situation in which formalisms meet experimental tests through
theoretical approaches and computer simulations has always
been a good moment in physics to promote new interdisciplinary
ideas. We would argue that, a century after publication, the
influence of Thompson’s work has been instrumental in this
endeavour.
Still, a key issue involves keeping in mind scales and biological

functions: proteins and nucleic acids contribute to changing
mesoscopic parameters such as wall tension and friction, which
have relevance at the micrometer scale, a scale 1000 times larger
than a single molecule. A physical model will highlight
conservation laws, symmetries, and use these mesoscopic
parameters. As such, mutual expectations between biologists and
physicists should be frankly formulated: mutants isolated from
screens can be essential to probe new morphogenetic events, but
links between the deleted genes and the model will have to be
complemented by renewed measurements of motor/adhesion
densities, cell shapes, and mechanical characterisations. On the
other hand, the model will need to take into account the inherent
specificity of living matter and the degree of adaptation; cells can
change adhesion and motor activity over the course of
morphogenesis events, and this feature is not yet encoded in
either the founding hypothesis or the equations of some models. In
other words, the systems biology of the Rho pathway/cytoskeleton
should be appropriately merged with the equations of the physics of
active matter to highlight the specific nature of tissues. This should
lead in turn to formalisms encoding information of the signalling
pathway and changes in shapes, with predictive power and
experimental tests. A truly multiscale approach is appearing and
should be encouraged, where each scale is given equal importance,
and with special emphasis on both bottom-up and top-down mutual
feedbacks between scales.

This shift in paradigms in the biology and in the physics
communities calls eventually for new education programs and
revised research strategies. To what extent could the example of
Thompson be a source of inspiration? Thompson had an authentic
double education. He interacted closely with a small community
with mutual trust and patience in probing ideas. He also tested
hypotheses with a thorough exploration over decades of available
observations and measurements. This slow pace in thinking might
be a prerequisite in progressing in this interdisciplinary adventure
and, beyond the scientific legacy of Thompson, through the clarity
and visionary nature of his book, his own style in being a scientist
could be exemplary for the modern scientist as well.
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