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About the magnetic field of a finite wire

T Charitat1,3 and F Graner2

1 Institut Charles Sadron, CNRS-UPR 22, Université Louis Pasteur, 6 rue Boussingault,
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Abstract
The Ampère theorem and the Biot–Savart law are well known tools used to
calculate magnetic fields created by currents. Their use is not limited to the case
of magnetostatics; they can also be used in time-dependent problems. We show
in this paper that the highly classical example of a straight wire,generally treated
as a simple magnetostatics problem, should be considered in the framework of
time-varying fields. This academic question is a nice illustration showing the
generality of the Biot–Savart law, and especially how it implicitly takes into
account the charge conservation law.

1. Introduction

The Ampère theorem and the Biot–Savart law are well known tools used to calculate magnetic
fields created by current distributions [1]. The former is often used in high-symmetry problems
of magnetostatics, but it may be used in cases of time-varying field, with some precautions.
The latter is more general, because it has fewer symmetry constraints. It can be used in a wide
range of classical magnetism problems, and it provides an elegant way to calculate the magnetic
fields created by plane current-carrying wires [2]; it can also be generalized to the electrostatic
field [3]. Analogous equations can also be found in various physical problems, such as those of
topological defects at the Kosterlitz–Thouless transition [4], magnetic fluids [5], amphiphilic
monolayers [6], type-I superconductors [7],and the N-body problem of celestial mechanics [8].

Students usually hesitate over which one they should use. In particular, in the unphysical
but simple case of a constant electric current I flowing through a finite straight wire (figure 1),
students wonder why the two methods yield different results (see below—equations (1), (3)).
Our experience shows that they find satisfactory the explanations that we develop in this paper.
It is a clear presentation of how the charge conservation is implicitly taken into account by the
Biot–Savart law.
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Figure 1. An electrical current I flows across the rectilinear finite wire AB. What magnetic field
does it create at point C?

2. Magnetic fields of infinite and finite wires

The determination of the magnetic field created by a rectilinear infinite wire is a classical
problem that can be found in every electromagnetism book. The calculation is generally carried
out by applying the Ampère theorem to a current circulation on a circle � of radius r . Simple
symmetry considerations indicate that the magnetic field is orthoradial with �B = B(r)�uθ , and
the use of the Ampère law leads to the well known result

µ0 I =
∮

�

�B · d�l = 2π R| �B(r)| ⇒ �B(C) = µ0 I

2π R
�uθ . (1)

The case of a finite wire AB of length 2l (figure 1) is also classical and generally found as
an example of the use of the Biot–Savart law:

�B(�r) =
∮

A→B

µ0 I

4π

�r × d�s
r3

. (2)

This expression allows one to calculate the field at any point, and especially in the
symmetry plane of the wire, leading to

�B(C) = µ0 I sin α

2πr
�uθ = µ0 I

2π

1√
r2 + l2

�uθ . (3)

Expression [3] appears to have the correct behaviour: it depends on the length of the wire,
and gives the magnetic field of an infinite wire (equation (1)) for r � 2l. It is usually used to
calculate the magnetic field in more complex situations, for example that of a squared closed
loop.

3. The problem

Now we could also try to use the Ampère theorem to calculate the field in the symmetry plane
of the finite wire. This leads to the same expression as for an infinite wire (equation (1)):
surprisingly, it is independent of the wire’s length; hence it is clearly different from the
expression obtained by using the Biot–Savart law (equation (3)).
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Figure 2. An electrical current I flows across the rectilinear finite wire AB. A source and a sink of
electrical charge +q and −q ensure charge conservation.

Obviously, the Biot–Savart law gives the correct answer to our problem, and the Ampère
law gives a wrong result. The question that we now have to answer is the following: what
kind of mistake are we making by using Ampère’s law in this case?

4. Solution

One way to answer this question is to say that a current I cannot flow along a finite wire: it
is not a physical situation, because the wire has to be connected to something. This is not
a problem in the case of an infinite wire, because one can suppose that the wire is closed at
infinity.

This answer is not wrong, but is not totally satisfying, and students often demand more.
The Biot–Savart law (equation (2)) is nothing more than the addition of contributions coming
from many small wire elements. Why is it possible to calculate the magnetic field in an
unphysical situation with the Biot–Savart law, and not with the Ampère theorem?

A solution giving physical sense to the finite wire is to put a source and a sink of electrical
charge +q and −q at each extremity. It is then possible to have an electrical current I flowing
along the wire (figure 2). The major point is now that both charges q(t) and −q(t) are time
dependent and create an electrical field �E(�r) which is time dependent! Hence this problem
is no longer a magnetostatics problem: we have to treat it in the more general framework of
electromagnetism.

It is still possible to use Ampère’s theorem, as long as we do that in a more general way.
Using the Maxwell–Ampère law for time-varying fields leads to

�∇ × �B = µ0 �j + µ0ε0
∂ �E
∂ t

. (4)

By taking the flux through the surface subtended by � on both sides of this equation, one
obtains ∮

�

�B · d�l = µ0 I + µ0ε0
∂

∂ t
(�(t)) (5)
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where �(t) is the flux of the electrical field through the surface subtended by �. This electrical
flux is easily calculated:

�(t) = q(t)

ε0
(1 − sin α) (6)

and equation (5) becomes

2π R| �B(C)| = µ0 I + µ0ε0
∂

∂ t

[
−q(t)

ε0
(1 − sin α)

]
= µ0 I sin α. (7)

This is equivalent to equation (3) obtained with the Biot–Savart law.

5. Conclusions

The problem of the magnetic field is not a problem of magnetostatics but a time-varying fields
situation. The Biot–Savart law gives the correct result because it is a general solution of
Maxwell–Ampère equations, as can be easily seen by considering the rotation of the following
expression:

�B = µ0

4π
�∇ ×

∫
V

�j(�r)

r2
d3�r . (8)

By using the continuity equation ∂ρ/∂ t + �∇ · �j = 0, we obtain again the Maxwell–Ampère
equation (4). This academic question is a nice illustration of the generality of the Biot–Savart
law, and especially how it implicitly takes into account the charge conservation law.
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