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Abstract. We investigate the mechanical properties of a two-dimensional amorphous solid. It is formed
spontaneously by the adsorption of a protein (the β-lactoglobulin) at the surface of water. We measure its
mechanical response in both elastic and plastic regimes by applying a point-like force (using a glass fiber).
We compare our results with previous measurements of shear moduli using a floating torsion device.

PACS. 68.47.Pe Langmuir-Blodgett films on solids; polymers on surfaces; biological molecules on sur-
faces – 87.15.La Biomolecules: Mechanical properties – 62.20.Dc Elasticity, elastic constants – 62.20.Fe
Deformation and plasticity (including yield, ductility, and superplasticity)

1 Introduction

Proteins spontaneously adsorb from aqueous solutions to
the surface of water [1], essentially due to the entropy
increase resulting from dehydration of the hydrophobic
regions of both the interface and the protein surface [2].
The protein adsorption decreases the surface energy,
slightly favoring the formation of foams and emulsions;
more important, once such a dispersion is formed, its
stability relies essentially on the viscoelastic properties of
the protein layer, which control the rate of liquid drainage
within the films, as well as film rupture [3]. This ability
to form and stabilise foams and emulsions is especially
important for the preparation of multiphasic aliment
using food proteins [4].
β-lactoglobulin is a protein produced in large amounts

in milk. It represents a quarter of the protein fraction
of bovine lactoserum. Its sequence and structure are
known [5]; for a review, see [6]. Due to its high solubility
in water, it is a convenient agent to form foams, emulsions
and gels. It is often used after industrial treatments such
as lactosylation (Maillard reaction): covalent attachment
of one or several lactose molecules on the lysine residues
of the protein [7].

When adsorbing to and saturating a hydrophobic sur-
face such as air-water interface, this protein spontaneously
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forms a very rigid monolayer which resists shear and
is in fact a two-dimensional (2D) solid. Such a solid is
amorphous, as can be checked by a Brewster-angle micro-
scope [8] (sketched in Fig. 1). Surface shear studies have
investigated how a modification of the protein properties
(due, for instance, to aging or thermal treatments) affects
the rheological properties of the 2D solid [9,10].

Renault and coworkers [11,12] have extensively mea-
sured the shear elastic constants of these protein lay-
ers during adsorption and solidification. They used a
centimeter-size device floating on water, rotating periodi-
cally with an amplitude much smaller than 1 radian, under
a sinusoidally varying magnetic driving torque, resisted by
the protein layer’s 2D shear elasticity to be measured [13],
similar to a device invented to investigate the viscoelas-
ticity of suspended soap films [14].

We aim at a better understanding of the interfacial me-
chanical properties of these proteins. More fundamentally,
we also use them as examples to investigate the mechan-
ics of 2D amorphous solids, which are still poorly under-
stood. In this paper, we study the mechanical properties
of these solid layers in a wide range of loading, from linear
elasticity to large plastic deformation. We perform mea-
surements at the scale of 10 µm, and compare them with
those of Renault et al. at a scale a thousand times larger.

We use a soft glass fiber to both apply a force on the
layer, and measure it. The principle of our experimental
set-up is similar to the one developed by Barentin et al.
[15,16] to measure the surface viscosity of a monolayer:
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Fig. 1. Experimental set-up. A Brewster-angle microscope
(sketched here as a laser 1 hitting the surface at Brewster an-
gle, and camera) monitors the protein layer while a soft fiber
(which guides the laser 2) simultaneously deforms it.

we determine the horizontal force between the monolayer
and a round obstacle moving with respect to each other.
However, since in the case of viscosity the coupling with
the 3D phase suppresses the long-range divergences which
do exist in 2D elasticity, our calculations are different
from theirs.

2 Materials and methods

2.1 Preparation of protein layer

The β-lactoglobulin is a generous gift from S. Bouhal-
lab (Laboratoire de Recherches de Technologie Laitière,
INRA, Rennes) who purified it according to the proto-
col explained in [7], either as native protein, or after a
lactosylation treatment in powder (lac130) or in solu-
tion (DW-lac6). The proteins are lyophilised and stored
at 4 ◦C. Before deposition, they are dissolved at concen-
tration 5 µg/ml in a phosphate buffer (sodium phosphate
0.1 M, NaCl 0.1 M, pH 6.8± 0.1).

The trough is 8 cm long, 2 cm wide, and 0.7 cm deep.
Its sides are made of teflon (PTFE), its bottom is a glass
plate which allows for the transmission of the laser beam
for force measurement, as explained below. All experi-
ments are realized at room temperature, 20.5 ◦C. We de-
fine the age A of the protein layer with reference to the
moment, referred to as A = 0, where the protein is in-
jected in the trough; this is less than 15 minutes after the
preparation of the protein solution. Measurements begin
while and after the proteins adsorb at the surface of water.

2.2 Force sensor: soft optical fiber

We use a vertical glass fiber (Fig. 1), actually a denuded
optical fiber (Thorlabs). Its free end crosses the protein
layer and immerses 10 µm below the surface. We silanise

the fiber (n-octadecyltrichlorosilane diluted at 2% in oc-
tane): we obtain a contact angle close to 90 ◦, as checked
with a camera attached to the side of the trough; this re-
sults in a meniscus of at most a few microns, as estimated
with the Brewster-angle microscope.

The fiber is held in a concentric chuck (Melles-Griot)
fixed on a horizontal translation stage (M-UMR5, Micro-
controle) with a micrometric thrust coupled to a step-by-
step motor (Stebon, 400 steps/turn), allowing for a hor-
izontal imposed displacement Ximp up to 6 mm. Thus,
the fiber applies a horizontal point-like deformation to the
protein layer.

We then measure the horizontal displacement ζ of the
free end of the fiber with respect to its fixed end. We can
deduce the horizontal force F exerted by the protein layer
on the vertical fiber, through the equation F = Kζ: here
K is the bending rigidity of the fiber, which needs to be
determined (see below).

We finally deduce the resistance of the protein layer,
that is, the effective layer rigidity keff , defined as the ratio
of the force F to the horizontal displacementX = Ximp−ζ
of the fiber within the protein layer:

keff =
F

X
=

Kζ

Ximp − ζ . (1)

As long as the solid layer remains in its linear elastic
regime, keff remains constant. It is a global property of
the whole solid (its material, its size, and geometry) un-
der a given applied deformation. In fact, keff represents a
physically intuitive quantity: the rigidity one would feel
by sticking a finger in the solid and moving it laterally.

To measure the deflection ζ of the fiber, we connect
it to a laser (“Laser 2” in Fig. 1) consisting of a diode
(Melles-Griot, 10 mW, 632.88 nm). Its diverging beam
crosses the glass bottom of the trough and reaches be-
low the trough a phodetector (Position Sensing Detector,
Radiospares) fixed onto the same translation stage as the
fiber itself. The signal of the detector, recorded on the
computer through a DAC card, measures (up to a known
factor) the actual deflection ζ.

To calibrate the bending rigidity K of the fiber, we
hold the fiber horizontally and measure with a camera
its deflection under its own weight (for low K) or under
added weights (for high K). The fiber deflection, both
linear and reversible, is elastic. The rigidity K of a fiber
of radius r and length L goes likeK ∼ r4/L3 [17]. It is easy
to vary it over several orders of magnitude by adjusting:
either r, by attacking the glass with fluorhydric acid at
40% concentration; or L, by changing the height of the
chuck above the water surface.

We have studied the same protein layer using fibers
with different rigidities ranging from 0.3 to 33 mN/m. As
expected, with all fibers we measure the same effective
protein layer rigidity keff , namely 1 ± 0.1 mN/m. As ex-
pected, again, we obtain the best signal/noise ratio when
ζ and X = Ximp − ζ are both large, that is (Eq. (1)),
when the fiber rigidity is comparable to the protein layer
rigidity (data not shown, see Ref. [18], pp. 44 and 132).
To perform the measurements we report below, we use a
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Fig. 2. Example of experimental measurement of the deflec-
tion ζ of the fiber, hence of the force F = Kζ, versus the
displacement X of the fiber lower end. It represents the me-
chanical response of the 2D solid, while the fiber is displaced
at speed Ẋimp = 372 µm s−1. A: yield point. B (arrow): the
fiber is stopped (Ẋimp is set to 0) and the relaxation begins.

fiber of diameter 2r = 26±1 µm, length L = 1.5±0.1 cm,
rigidity K = 1.64± 0.08 mN/m.

2.3 Mechanical measurements

We move the fiber at constant applied velocity Ẋimp cho-
sen between 25 and 2500 µm s−1. We have checked that,
in the absence of the protein layer, the force exerted by the
pure water is too low to be measurable (data not shown).

Figure (2) presents a typical recording and evidences
three phases:

– The elastic regime. After a short waiting time, the force
increases linearly with time t, until point A.

– (A-B): the plastic regime. The protein layer yields,
then the force reaches a plateau Fp.

– From point B onwards, a relaxation phase.

From such force recording we measure directly the
plateau force Fp as an average over F (t) = Kζ(t) on the
plateau (A-B). On the other hand, it is more indirect to
extract the elastic properties, for the following reasons.

In linear elasticity, the elastic moduli of an amorphous
(hence isotropic) 2D solid are characterized by two num-
bers, for instance its shear modulus µ and its Poisson co-
efficient ν. They are defined by the Hooke’s law, that is,
the relation between the stress tensor σ and the strain
tensor u [17]. In the present case, where the stress has no
vertical diagonal component (“plane stress”, σzz = 0), the
2D Hooke’s law writes

σxx + σyy = 2µ
1 + ν
1− ν (uxx + uyy),

σxx − σyy = 2µ (uxx − uyy),
σxy = 2µ uxy. (2)

Fig. 3. Displacement field u(x, y) within the 2D solid, for a
force exerted towards the right by a fiber in the center (not
drawn). This plot has been calculated up to O(r/a, r/b) terms,
in the case of square geometry (a = b), no-slip boundary con-
ditions (u vanishes at the boundaries) and ν = 0.

From a linear fit of the F (t) = Kζ(t) curve in the
elastic regime, we measure the slope ζ̇. We then deduce the
effective rigidity keff of the protein layer (Eq. (1)) through

keff =
dF
dx

=
K ζ̇

Ẋimp − ζ̇ . (3)

What information can we extract from keff? Obviously,
keff is a function of µ and ν. Can we calculate this func-
tion? This is far from trivial, due to the long range of
elastic interactions in 2D.

In the appendix we calculate the deformation field in-
duced by the fiber in the 2D solid for the geometry of our
experimental set-up. We must specify the boundary con-
ditions: whether the monolayer is anchored, or not, to the
boundaries will affect the respective importance of com-
pression and shear induced by the fiber. Since we do not
have access to this information, we chose for simplicity
to solve the no-slip boundary conditions. We note that
the results of our calculations (Fig. 3) look similar to our
observations of the displacement of beads inserted in the
layer (data not shown).

From these calculations, we deduce the relation
between the effective rigidity and the shear modulus
(Eq. (A.6)):

µ

keff
= 1.067− 0.329 ν. (4)

Hence, µ is very close to the measured value keff , with a
small correction which depends on the value of ν.
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Fig. 4. Formation and solidification of the native protein layer:
force displacement curve F (X) at different ages A after protein
injection. From bottom to top: A = 0.78, 4.25 and 6.21 hours.
The fiber velocity is Ẋimp = 123 µm s−1 for each curve.
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Fig. 5. Variations of keff (squares, left scale) and Fp (triangles,
right scale) with the fiber velocity Ẋimp. The horizontal lines
indicate the average of low-velocity data; the tilted lines are lin-
ear fits of high-velocity data. Their intersections determine the
critical velocity Ẋc. We find Ẋc = 110 ± 25 µm s−1. Here the
age of the layer is A = 8 hours. Note the semi-logarithmic scale.

3 Results

3.1 Solidification of the 2D β-lactoglobulin layer

We have followed the formation of the 2D β-lactoglobulin
solid at successive ages, after protein injection (Fig. 4).
Both the effective stiffness keff and the plateau force Fp

increase with the age of the protein layer, reflecting its
progressive solidification.

3.2 Elasticity of the 2D β-lactoglobulin solid

Figure 5 presents measurements performed after 8 hours,
when the protein layer rigidity does not seem to evolve
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Fig. 6. Comparison between the effective stiffness of the
β-lactoglobulin (circles), the DW-lac6 (squares), and the
lac130 (triangles). Measurements are performed at Ẋimp =
123 µm s−1. Dotted lines are guides for the eye.
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Fig. 7. Cycles of loading (a-c, d-f , ...) and unloading (c-d, f -g,
...) in a 2D β-lactoglobulin solid in plastic regime. Letters b, e,
... correspond to yield points.

any longer (as already observed in Ref. [11]). It shows
that, at low velocity Ẋimp the values of keff and Fp are
independent of Ẋimp. Above Ẋc, the velocity-dependent
dissipation becomes high enough to progressively affect
the mechanical response of the protein layer. We thus per-
form the following measurements for Ẋimp = 123 µm s−1,
in the cross-over region. We find that the β-lactoglobulin
is significantly stiffer than its two treated variants (Fig. 6).

3.3 Plastic behaviour of the 2D β-lactoglobulin solid

In the plastic regime, Figure 7 displays cycles of load-
ing and unloading. In a-b, the layer responds elastically.
It yields in b; from b to c it covers a plastic plateau,
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Fig. 8. Aging of the protein layer: comparison between the
plastic force measured here with the fiber (symbols, left scale),
and the shear modulus measured by torsion [11] (lines, right
scale). Legend: β-lactoglobulin (circles, solid line); DW-lac6
(squares, dashed line); and lac130 (triangles, dots).

with a roughly constant force. Points b and c are com-
pletely equivalent from the macroscopic point of view, al-
though they are microscopically different (as two micro-
scopic states of a gas differ). However, by unloading at
c and re-loading at d, we observe that the layer behaves
elastically and reversibly. This reversibility is repeatedly
observed, for instance at f . This does not depend on the
sign of the loading, as is clear from the lower part (nega-
tive forces) of Figure 7.

Moreover, by collapsing all loading and unloading
curves, we observe that they all have the same slope within
10% (not shown). Hence, all these different microscopic
states b, c, e, f , have the same effective stiffness.

The plastic force increases with the age of the protein
layer (Fig. 8). Surprisingly, this increase seems to paral-
lel that of the shear modulus measured by the torsion
method [11]: see discussion.

4 Discussion, conclusion and perspectives

We have investigated a monolayer of β-lactoglobulin at the
surface of water which spontaneously forms an amorphous
2D solid. We have measured its rheological response under
a point-like force, using a soft fiber.

Our results concern four points:

i) The elastic, plastic and viscous behaviours. We have
followed the solidification of the protein layer. When
the solid is formed, we measure its effective stiffness
keff and the plateau force Fp. Their values are inde-
pendent of the fiber velocity Ẋimp, until Ẋimp reaches
a critical velocity Ẋc, where the velocity-dependent
dissipation becomes significant. We have measured
Ẋc = 110± 25 µm s−1.

ii) The link between elastic and plastic properties. Dur-
ing cycles of loading and unloading, we have observed
that the elastic properties of the β-lactoglobulin 2D
solid remain basically unchanged (with respect to the
undeformed solid), even far in the plastic regime. This
would suggest that the solid keeps the same statistical
properties even in microscopically very different con-
figurations.

iii) The comparison with torsion devices. Our measure-
ments of the shear modulus µ (Fig. 6) are an order of
magnitude smaller than the values obtained by Gau-
thier et al. [11] (Fig. 8, right scale). We can suggest
three explanations to this discrepancy.
First, the dependence of the elastic properties on the
scale of the measurement. Our measurements are per-
formed at the scale of 10 µm, while torsion measure-
ments are perfomed at the centimeter scale. The ob-
served differences in order of magnitude could then re-
flect a heterogeneity of the 2D solid. This is compatible
with what Zakri et al. found on solid alcohol monolay-
ers: taking advantage of their crystalline order, they
could measure values corresponding to a truly homo-
geneous 2D solid (by X-rays probing the intermolecular
interaction potential), and found that they were orders
of magnitude larger than their measurements with the
torsion device [13]. Future studies might aim at better
understanding the role of spatial heterogeneity on the
macroscopical rheological properties, including dissi-
pation.
Second, the mixing between elastic and plastic mea-
surements. The fiber method unambiguously separates
both regimes (Fig. 2). On the other hand, the tor-
sion measurements (shear modulus µ) seem to be much
more correlated to our plastic (plateau force Fp) than
elastic (effective stiffness keff) measurements (Fig. 8).
Third, the long range of elastic interactions. The ratio
Fp/µ is approximately constant and equal to 1.75 cm.
This length might be characteristic of the geometry
of the experimental set-ups. The present work thus
suggests to revisit experiments with torsion devices; a
systematic study is in progress, and preliminary results
indeed indicate that the torsion devices are sensitive to
the size of the trough.

iv) Calculations of 2D elasticity. In the course of this
study, we have calculated the macroscopic response to
an in-plane external force of a 2D solid, of given elastic
properties (shear modulus µ and Poisson coefficient ν).
Due to the logarithmic range of 2D elasticity fields, this
calculation turns out to be non-trivial and involves the
geometrical details of the experimental set-up. In Ap-
pendix A, we present the results, firstly using expres-
sions as general as possible, then the particular case of
our set-up. We show that the effective stiffness keff is
almost equal to the shear modulus µ (Eq. (4)).

We thank warmly S. Bouhallab for providing us with purified
proteins; F. Gauthier and P. Ballet for help with experiments;
F. Gauthier and J.-F. Legrand for numerous discussions; and
S. Cox for reading the manuscript.
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Appendix A.

Appendix A.1. Problem under consideration

Consider an isotropic 2D solid with given elastic proper-
ties: shear modulus µ and Poisson coefficient ν. An object
is inserted in this solid, then displaced in-plane within the
solid by a distance X. The solid deforms: a point of the
solid at position (x, y) undergoes a displacement u(x, y).
Due to its elastic properties, the solid resists this defor-
mation: it applies to this obstacle a force F. We want to
determine X and |F|, that is the effective stiffness of the
solid, keff = |F|/X (Eq. (1)).

The displacement field involves a recirculation: a com-
pression in front of the obstacle, a shear on its sides, and
an extension behind it (Fig. 3). Both µ and ν should thus
enter in the expression of keff . Due to their logarithmic
range, 2D elasticity fields feel the boundary conditions of
the system: the expression of keff should thus also depend
on the geometrical details of the experimental set-up, in-
cluding the shape and size of the solid itself and of the
obstacle.

Appendix A.2. Notations

The fiber is a vertical cylinder. Its intersection with the
horizontal solid, grown at the water surface in a rectangu-
lar trough, is a circle (Fig. 9). We thus model our ex-
periment by a circular 2D obstacle. We call x its axis
of displacement, y the perpendicular axis. We call a =
2 ± 0.05 cm and b = 8 ± 0.05 cm the dimensions of the
trough, r = 13± 0.5 µm the radius of the circle.

The origin O of the axes is at the corner of the trough,
so that the obstacle is centered at position (a/2, b/2). We
denote by (x, y) the position on the surface S of the 2D
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Fig. 10. Graph of f(η) and g(η) from equations (A.5).

solid, and by (x′, y′) the position on the surface Σ of the
2D obstacle.

Let f be the force per unit surface applied by the ob-
stacle; hence, −f is the force per unit surface applied by
the solid layer to the obstacle. The displacement field u of
the solid is given by the 2D propagator G defined as

u(x, y) = − 1
µ

∫ ∫
Σ

G(x, y, x′, y′) · f(x′, y′) dx′dy′. (A.1)

The effective stiffness keff is defined as the ratio of the
total force applied by the fiber along axis x to the fiber
displacement along x (Eq. (1)). We thus obtain it from
the xx-component of G, or more precisely its average over
the circle delimiting the obstacle,

µ

keff
= −〈Gxx〉. (A.2)

We must take into account the finite radius r of the obsta-
cle, since Gxx diverges in the limit r → 0. Since there are
also long-range divergence, we must specify the bound-
ary conditions; as mentioned above, we chose the no-slip
boundary conditions u = 0 which lead to easier calcula-
tions of the Green function.

Appendix A.3. Propagator G: xx-component

To calculate this propagator, we need to consider images
of the obstacle mirrored by each side of the rectangular
box. There are thus an infinite number of reflections. The
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propagator hence appears as an infinite series of terms
labelled by the integer numbers m,n, namely the number
of reflections on each side.

We use here the equations of 2D elasticity of contin-
uous media, equations (2). We obtain the propagator for
an infinite two-dimensional medium from the known one
of the three-dimensional case by an appropriate integra-
tion along one coordinate, dropping divergent constants
in the process. Once the Green’s function for the infinite
medium has been found (and verified by insertion into
the Lamé equations with a δ-function inhomogeneity), the
propagator for a rectangle with zero displacement bound-
ary conditions on its sides can be obtained by the method
of images. This is a standard step which nevertheless re-
quires some patience in writing as well as care to avoid
divergent sums. The result is

Gxx =
1 + ν
8π

∑
m,n

{
3− ν
2(1 + ν)

× ln
(
[(x− x′ − 2na)2 + (y − y′ − 2mb)2]
[(x− x′ − 2na)2 + (y + y′ − 2mb)2]

× [(x+ x′ − 2na)2 + (y + y′ − 2mb)2]
[(x+ x′ − 2na)2 + (y − y′ − 2mb)2]

)

− (x− x′ − 2na)2
(x− x′ − 2na)2 + (y − y′ − 2mb)2

+
(x− x′ − 2na)2

(x− x′ − 2na)2 + (y + y′ − 2mb)2

+
(x+ x′ − 2na)2

(x+ x′ − 2na)2 + (y − y′ − 2mb)2

− (x+ x′ − 2na)2
(x+ x′ − 2na)2 + (y + y′ − 2mb)2

}
. (A.3)

We do not need to truncate these infinite sums, which are
evaluated numerically.

As a by-product of this calculation, we also obtain the
xy-component of the propagator. It does not have any
diverging logarithmic term, and its first O(r/a, r/b) terms
also vanish. This enables us to plot the displacement field
u(x, y) in the 2D solid, near the fiber (Fig. 3).

Appendix A.4. Effective stiffness keff

The ratio µ/keff (Eq. (A.2)) depends on two geometrical
parameters, the ratio r/b of the fiber radius to the trough
width, and the trough aspect ratio η = a/b, according to
the expression

µ

keff
= −3− ν

16π

[
2 ln

r

b
+ 4 ln coth

πη

2
− ln(1 + η2) + f(η)

]

+
1 + ν
8π

[
1
2
+ g(η)

]
+O(r/a, r/b), (A.4)

where

f(η)=∑
(m,n)∈(Z∗)2

ln
{
[4η2n2+4m2][η2(2n−1)2+(2m−1)2]
[η2(2n−1)2+4m2][4η2n2+(2m−1)2]

}
,

g(η)=
∑
q∈Z∗

(−1)q+1 πqη

sinhπqη
. (A.5)

Numerical summations of f and g converge quickly,
and sums up to m2+n2 ≤ 100 (for f) and |q| ≤ 10 (for g)
yield a 10−3 precision, plotted in Figure 10.

Here, for r = 13 µm, a = 8 cm and b = 2 cm, we
obtain f = −0.224 and g = −0.500, yielding:

µ

keff
= 1.067− 0.329 ν. (A.6)
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