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Three-dimensional bubble clusters: Shape, packing, and growth rate
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We consider three-dimensional clusters of equal-volume bubbles packed around a central bubble and calcu-
late their energy and optimal shape. We obtain the surface area and bubble pressures to improve on existing
growth laws for three-dimensional bubble clusters. We discuss the possible number of bubbles that can be
packed around a central one: the “kissing problem,” here adapted to deformable objects.
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I. INTRODUCTION (2) Growth laws: how does a foam age, avarsen due

to gas diffusion across its surfaces? The 2D result, due to

von Neumanr6], says that the growth rate of a bubljtf
Bubbles, such as soap bubbles, are objects with simplgreaA) is directly linked to its number of sides dA/dt

geometry and physical properties. But when two or morex(n—6); that is, it depends upon bubble topology only, ir-

bubbles cluster together, how well do we really understandespective of the precise geometry. In 3D, the growth law is

A. Motivation

their properties? written [7] as

The limiting case of a cluster of many bubbles, known as
a foam, is usually approached with continuum approxima- vl d_V_ _ %E Ap;S DG o
tions. An understanding of foam properties such as aging, dt 2 4 s ef

due to gas diffusion, and structure is a problem of fundamen-

tal interest stimulated by the need to predict the behavior ofvhere the sum is taken over each face, which has a pressure

foam in industrial applications. From carbonated drinks todifference Ap; and areaS;, Do is an effective diffusion

the processes used to extract gold ore from the earth, foam®efficient, and the dimensionless growth-r&ds a func-

are an important part of our lives with various industrial usesijon of shape only. Again, the normalized area appears to be

[1,2]. important, but does the 3D growth law depend only on the
The alternative to the continuum description, describechubble topology? In fact it does not, but it may make sense

here, is an approach based upon the study of finite clusters @ express the average growth rateFefaced bubbles as a

bubbles. Its advantage is the ease with which we can obtaifunction of F only G~ G(F) if the dispersion about such a
precise structural information. A further benefit of studying|aw is small.
finite, rather than infinite or periodic, foams is that the

bupbles are not “frustrated,” so t_hat we get a measure of B. State of the art
their free shape, rather than one influenced by long-distance _ )
correlations between bubbles. The study of 3D foam coarsening was pioneered by Gla-

This has been demonstrated convincingly in two dimenZier [7], who used a 3D Potts model. He proposed a linear
sions (2D), where exact results exist for two problems of growth law Ge<(F—const) for bubbles with a number of
paramount interest. facesF from 6 to 57 (and even from 4 to 60, with some

(1) The Kelvin problem: what is the least energguiva-  numerical uncertaim)y Similar linear laws were observed in
lent to surface area in 3D, or line length in RBiructure of ~ Subsequent experiments involving optical tomography and
equal-size bubbles that fills space? In 2D, HdBlsproved  reconstruction using thURFACE EVOLVER[8] (F between 9
that this is the familiar honeycomb structure. In 3D, whereand 16 and magnetic resonance imaging experim¢as0l
the problem is one of minimizing surface energy or area, ndor F from 4 to 26.

such exact result exists. Kelvi#] gave a candidate struc-  This growth law was refined by three detailed results pre-

ture, still believed to be the best for a structure containingsented by Hilgenfeldet al. [11]: first, an approximate ana-

identical cells, although in the general case it has since beefytical formula based upon reguldt-faced polyhedra with

beaten by the Weaire-Phelan structy#s consisting of curved faces

bubbles of two different types. The important quantity in this o3

problem is the surface area of each face of a bubble of unit G = i (F-2)ta ™ tant/3 XEV T

volume or, equivalently, the normalized total surface area 2" 13 2 )\3 XF)

S/VZ/S. (2)

where yg=2tan 14 siri(m/ ) — 1 and e = 6— 12/F is the

*Corresponding author. FAX+353-1-671-1759; Email address: nhumber of edges per face. For larggethis shows a square-

simon.cox@tcd.ie root dependences ,.(F>1)=2.14/F —7.79, effective for

TCNRS UMR 5588 & UniversiteGrenoble |, France. F greater than about 15; second(renexplici) correction
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for nonregular faces; third, numericéURFACE EVOLVER

a) b) 9

simulations for foams containing bubbles wihfrom 5 to P
42. Recently, Cox and Fortd4d2] also used thesURFACE /
EVOLVER to calculate numerically the structural properties of y
single “regular” bubbles with surfaces of constant mean cur- ‘
vature; this gave information for certain valuesrobetween

2 and 32.

FIG. 1. Examples of the clusters considered here WitV
C. Outline of this paper =1 in each casda) cluster ofF =13 outer bubblesthat is, a total

L of F+ 1= 14 bubblesstill attached{b) the central bubble, drawn to
Here, we study clusters consisting of one bubble SUry different scale, withF = 13 faces(this is a Matzke cel[22] with

rounded byF others, each with prescribed volumes. This g, square, ten pentagonal, and two hexagonal fa@@s bubble

represents a realistic foam surrounded by air, in contrast tgom approximate sphericity, described in Sec. 11l B.

the idealization used to derive E(R) by Hilgenfeldtet al.
[11]. We chose such an approach, which neglects long- We first place a point at the origin of a sphere of radius 1.
distance correlations between bubbles, because it should priohen the Voronoi points are placed at the positions given by
vide more physical insight than existing experiments andhe solution of the “covering radius problenf13]: the ar-
simulations, and enable more precise calculations than theingement of points on the unit sphere that minimizes the
analytical approach. Within this “mean-field” choice, all re- maximum distance of any point from its closest neighbor.
sults presented below are highly accurate, without approxiCandidates to the solution of this problem have been given
mations. Moreover, in principle, we should have access to albby Hardinet al. [18] for F from 4 to 130, which is exactly
physically realizable values d. what is required for our purpose. Note that this is not the
In the course of our study of the equal-volume case, weynly way to pack thé= Voronoi points, but it appearpartly
encountered what we call the kissing problem fdeform-  with hindsighi to have been a good choice—it gives all the
ablg bubbles. Our simulations allow us to ask: how manyarrangements we know to expect, e.g., For 6,12,32.
deformable(dry) bubbles can be packed around one other? e truncate the Voronoi diagram by adding Boints at a
The original kissing problem, discussed by Gregory andadial distance of 2 from the origin. We ensure that these
Newton[13], was how many identical hard spheres can suryter points are at least a distance'zg_F apart, decreasing
round one another, each touching the central one? In tWQ from 1 until a solution is found, usually at around
dimensions the answer is obvious and well known—only siX—q g8 These data are put through thes software; the out-
hard discs can be packed around one other, in the familigst file is then transferred to th®JRFACE EVOLVER version
honeycomb arrangement. For the three-dimensional problen, 184, we use two levels of refinement and quadratic mode,

consideration of the angle subtended by each sphere at th§ optain a high level of accuracy—we estimate all values to
central one suggested that the maximum number could be &% accurate to at least four decimal places.

high as 14, but Newton was correct in believing that only 12 \ye compute the following quantities for théh face

neighbors are possibl@4]. We Will_present arguments sug- —1 . F) of the central bubble: its number of sidas,
gesting that for bubbles these critical numbers arg2I) areaS;, and pressure differencap;. Then for the whole
and 32(3D). bubble we record its volum#, its normalized total line

The plan of the paper is as follows. We first describe OUligngth L/VY3, its normalized surface are&V23 (where S

method of cluster preparation and relaxation. There are Iim—:E,Si) and its growth rate through E€L), which we plot
its, for each set of given bubble volumes, to the valueb of . a|1 fu}]ction ofF. ’

for which stable clusters exist. In the equal-volume case we
offer a solution to the kissing problem. We then analyze in

more detail the shape and growth rate of many different Ill. TOPOLOGY AND LIMITS FOR EQUAL-VOLUME

bubbles, present predictions about coarsening, and quantify CLUSTERS
the spread of the growth rate about the growth (@v We first consider the case where the volume of the central
bubble is equal to that of its neighbokg,=V. Examples of
[I. DEFINITIONS AND METHODS such monodisperse clusters are shown in Fig. 1Herl3

and 26. This illustrates that despite the rather symmetric ini-
tial condition(putting points on a sphereve can still obtain
significantly skewed bubbles after relaxation.

We take a central bubble of volumé. and surround it
with F bubbles, each with the same volurie this is the
natural extension into 3D of the 2D “flower” of Weaiet al.
[15]. To create and equilibrate such a cluster, we use a .
Voronoi construction withvcs [16] and then thesURFACE A. The kissing problem for 2D bubbles
EVOLVER [17], as follows. For completeness, we consider first the two-dimensional

We must first make a choice about the topology of theproblem. How many 2D bubbles can be packed around one
cluster. Since we wish to create the cluster using a Voronobther of the same area?
routine, we must first choose an arrangemerft efl points Our initial pattern is that of the flower clusters introduced
about which to create bubbles. recently[15,19,2Q. It consists of a central cell of ared,
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FIG. 2. (a) A symmetrical 2D flower cluster witliF =12 petals
andA./A=2. (b) One of the possible stable buckled states of the "
same cluster wittA.=A. (c) One of the possible “ejected” states 5.25 o
[20] with F=13 petals andd.= A.

20 40 50 60

Number of faces F

surrounded byF identical petals of areA. A symmetric ex- . _— .

ample withF =12 petals and\,=2A=2 is shown in Fig FIG. 3. The normalized surface ar8&/“" varies, albeit over a

2(a). A priori, one could imagicne that the number of pet.alssma” range, nonmonotonically &sincreases. Inset: zoom over the

could increase without limit, with th& sides of the central raTge lel_li' Data are shown for volume ratios t/V

bubble becoming increasingly curved. :§(+),1(X),2( ),3(LJ), and 5@). For all values of the volume
However, Weairet al.[15] showed that foF > 6 there is ratio V./V, the pentagonal dodecahedronFat 12 has the same

“buckling” instability at ical ratio of the bubbl value of S/V?3, but for all otherF the surface area fluctuates
a. uckiing 'T‘S aniiity at a criucal ratio ot the bubble areas widely, although in general it decreases as the volume ratio in-
given approximately by

creases. Also shown are the data for bubbles with constant curva-
A./A~0.04F —6)2 ture (©) rather than with fixed volumgl2]. Shown as horizontal

c : : lines (from top to bottom are the values o§/V?? for the Kelvin
. 1 . structure (solid line), for the Weaire-Phelan structufguadruple
For unit areas and=>6+(0.04)" "“=11, the symmetric gashey for the “ideal” flat-faced bubblétriple dashek and for an
shape is therefore no longer stable, the flower becomegfinitely large bubble with hexagonal facéouble dasheg21].
“floppy,” and many modes of buckling, corresponding to
different shaped central bubbles, are possiale with the  he consequent elliptical deformation of the central bubble,

same enerdy An example forF =12, in which there is an  means that the transition to the asymmetric pattern is con-
elliptical mode of buckling, is shown in Fig.(8). tinuous.

Is it possible to pack even more bubbles? We find that for |t is jnteresting to note that the caBe=32 is special: it is
F>12, any of the buckled configurations of clusters with probably the most symmetric cluster fér>12—it corre-
unit areas are unstaple to a topologica}l change caused by tl%%onds to the g fullerene. Hence, by analogy, one might
length of one of the internal edges shrinking to Z&0]. AN aypect that stable clusters with unit volumes exist for higher-
example is shown in Fig. (2) for F=13 for which three qrger carbon structures. We triegdZF =42) and the ellip-
bubbles are “ejected” in an equilibrium configuration with .4 C,, (F=40) and did not find them to be stable. We thus
Ac/A=1. ) i conjecture that no more than 32 bubbles can touch the cen-

Thus we conjecture that the maximum number of bubblegyy| one: 32 appears to be the kissing number for 3D bubbles.

that can touch the central one is 12. This is twice the valugyacall that for hard spheres the kissing number is 12.
for hard discs.

IV. SHAPE, PRESSURE, AND GROWTH RATE
B. The kissing problem for 3D bubbles

) . . ) o We next analyze in detail the statistics of the bubbles
In three dimensions the idea is the same. In principle onggund in our simulations.

could imagine that there should be no limit to the number of

bubbles which will fit around the central one, albeit with the

latter being hugely distorted. However, since the area of each A. Bqual-volume bubble clusters

of the five-sided faces shrinks Bdncreases, our simulations ~ We consider first the monodisperse case, relevant to the

of bubbles with unit volumesy./V=1, do not find a stable Kelvin problem, where the volume of the central bubble is

cluster for all possible values d%. In fact, we could only equal to that of its neighbord/.=V [21]. As mentioned

find clusters for 5<F<32; that is, we cannot obtain a above, we can go frofR=5 to 32. The ratid5/V??, shown

bubble with more than 32 faces and volume equal to that oin Fig. 3, is lowest at-=12, and increases steeply fér

its neighbors which satisfies Plateau’s laws after enésgy  greater than about 16.

face areaminimization. The inset in Fig. 3 shows the data around the optimal
For most values oF, the shrinkage of five-sided faces is regionF=11-16. These bubbles, which do not pack to fill

accelerated by an ellipsoidal distortion of the central bubblespace, have lower area than Kelvin(6.306 and even

[see Fig. Lc)], due to the asymmetric location of the pen- Weaire-Phelan'q5.289 (see Ref.[22] for details of other

tagonal faces amongst the hexagonal ones. Might there bespace-filling foam structurgs They are barely above the

discontinuous buckling transition for 3D clusters? As a resulvalue for the so-called “ideal” bubbl€5.254 [23]. The lat-

of further simulations, we believe not: this asymmetry, andter, with F=13.39, describes a reguldbut unphysical
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FIG. 4. The line-length ratid./V*? increases in proportion to FIG. 5. The optimal normalized surface ar&g,/V?* for a

the square root ofF [12] (inse). We therefore plot the ratio range of values of the volume ratid./V. Data are shown for
L/VYFY2 for volume ratios ofV./V=3(+),1(X),2(*),3(1), values ofV./V=1,2,3, and 5¢) and for the representative calcu-
and S@). The data are everywhere closelte- 4.35VY3F Y2 con-  lation for F=122 with V./V=200(x). The limiting value for
firming the square-root behavior. The deviation increases asfboth V. /V— at S/V?3=5.229 is shown as a horizontal line and we
andV,/V increase. also show a power-law fits/V?3=5.229+ 0.078F %423

“bubble” which would have flat faces, and hence a growth  Note that the possible range Bfis not always continu-

rate of zero. ous. For instance, we cannot construct a stable cluster with
Also of interest is the normalized line lengthVY® of 26 neighbors foiV./V=3%, hence we findF e[4-25,27.

each bubble, plotted in Fig. 4. Note that all data lie close tosimilarly, 11 neighbors are unstable fof./V=>5, and we

a line L/V¥3«\F [12]. We therefore show the ratio find F <[10,12—6Q.

L/VY¥FY2in Fig. 4: the maximum deviatiofi.e., the shal- For each value ofF we record the topology of each
low minimum in the datpoccurs forF~25. bubble, collated for all volume ratiogTable ), using the
notationn, to mean that the bubble hadaces withn sides.
B. Nonequal volumes The topology of the central bubble might depend\(V:

we find such nonuniqueness in only two instances. We accept
this due to the slight randomness used in placing tke 3
We next consider the case where the volume of the centraduter points to truncate the initial Voronoi pattern.
bubble is not equal to the volume of its neighbors. There are The line length, shown in Fig. 4, falls close to the same
again limits to the possible stable clusters, but they vary witlcurve as in the monodisperse case. The square-root approxi-
the volume ratio. We study the simple ratigs/V=13,2,3,  mation becomes slightly worse as the bubbles become larger
and 5. This choice of volume ratios allows us to explBre and gain more faces, with the maximum deviation occurring
from 4 to 60. at higherF for increasingV./V.

1. Simple volume ratios

TABLE I. The topology of each central bubble, wherg denotes the number of n-sided faces. Here
“*» denotes configurations for-=2 and 3 from Ref[12] and “**" denotes alternative configurations for
given F with differentV /V: F=11 (4,56, for V./V=3) and 34 (546, for V./V=2).

F Topology F Topology F Topology F Topology
1 16 5164 31 51861771 46 512634
2 1,* 17 5,65 32 515620 47 5463172
3 2;* 18 5,566 33 51461971 48 5,636
4 3. 19 5,67 34 5,655"* 49 5,637
5 3,4, 20 5,65 35 546197 50 5,638
6 4 21 5,69 36 5462072 51 5,639
7 4.5, 22 5,610 37 5,655 52 5563871
8 4,5, 23 5,611 38 5,626 53 5563971
9 4,5, 24 5,612 39 51,657 54 51,642
10 4,54 25 5,613 40 51,68 55 5463972
11 4,566,** 26 5,614 41 51,69 56 51644
12 515 27 5,615 42 5,630 57 5,645
13 451662 28 51616 43 51631 58 91646
14 5,6, 29 5,617 44 5,63, 59 5,647
15 5163 30 51618 45 51863171 60 912648
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2. Large volume ratios 160

30
With largerV./V we can look at bubbles with many faces 14¢ I 25

and very low surface areas. For instance, \th 122 (cor- 190 | 20
responding to the fullerene,g) andV./V=200 we find a 100 L lg
bubble with topology 5,6110and S/V?*=5.239, see Fig. 5. 5
We could extend this process to larger bubbles with more 8 11 12 13 14 15 16
faces. The normalized area should eventually approach theeo |-
value for an infinitely large bubble with hexagonal faces: , |
S/IV?3=5.229[21]: note that this is not the theoretical lower
bound for the normalized area, which corresponds to a2
spherical bubble with-—1 infinitesimally small neighbors 0
[24] SIV?3=(36m)3=4.836. 0

i

T 7T
\
\
3

|

0t Scaled Volume V /3 —+— o

. . Scaled area s/ | e

10 20 30 40 50 60
Number of faces F

3. Correlations FIG. 6. The volumeV and surface are8& of a bubble withF

Real foams often have a distribution of bubble vqumes,faces scaled with the average length of an eldgehe data for the

and their topology is correlated to the geometry: |argersurface area are affin8(|2=2.573379.80A1, while for lowF the
bubbles tend to have more neighb§2s]. volume data are approximately quadraii¢] 3~ 0.053F2. Data are

Such correlations appear in our resu":s’ a|th0ugh we d|(§hOWn for all volume ratioslc/V considered here, and the inset
not specifically include them. Their physical origin is clear. Shows details o and S for bubbles with 11-16 faces.
In fact, consider a bubble of volumé., and consider the
average of its neighbors’ volumes, denotédmean field the average growth ratell], and quantifies the dispersion
description. Then, for this giverV./V ratio, the physically ~around this averagéess than 1% dispersignConversely,
realizable values of are limited. Within the possiblg, the ~ for F<12, our data are clustered and significantlip to
S(F) curves admit an optimum: there is a valueFofvhich 10% larger than the analytical formula, which confirms that
minimizes the bubble area. These optinfalvalues do in- the analytical approximations gradually lose their validity at
crease withV./V. Moreover, in Fig. 3 we can read the op- 10w F, as expected11]. In a coarsening foam, the bubbles
t|ma| Surfacesopt/VZ/3 as a function ofF: |t iS the envelope W|th IOW F are |mp0rtant because itis these bubbles that
of all curves plotted, shown in Fig. 5. It decreases roughly aglisappear. So although fd¥=12 the growth rate is well
one over the square root &fas the volume ratio increases. approximated by Eq2), we give in Table Il the growth rates

In 2D, the expression fd[opt/A1/2 versusn has been used for bubbles withF=12, averaged over all simulations. The
to estimate the energy of a 2D fod®26], then to determine values communicated to us by Hilgenfeldt agree to better
the correlations between geometfgreaA) and topology than 1%.
(number of sidesn) [27]. Here, its 3D counterpart, the
Sopt/VZ’3 versusF relation, appears to have the same essen- V. CONCLUSIONS
tial property as in 2D, namely, to be a nonincreasing function
of F [21]; we thus hope to extend to 3D the 2D reqd@7].

In the theory of foam drainage, in which liquid flows
along the edges separating the fa¢@kteau bordejs and

The structure of a foam in equilibrium minimizes its
(free) energy, which is the product dff) two quantities char-

the coupling of drainage with coarsening, it is useful to know NS T Y e
the following two dimensionless parametéts28]: V/i2 and 08 Lg- SE 1
/1%, wherel is the average length of an edge inffiaced 08 3 A
bubble. We can calculate these quantities from our results,= 0.4 = 450 10 20 30 40 50 601
and they are shown in Fig. 6; both increase strongly with thellf 02 % E
number of faces= and are insensitive to the size of the & o f -3l
neighboring bubbles. © o2f
04k ¥ ]
C. Growth rate 06F . Lo o ]
As a result of these simulations, we are able to calculate 10 20 30 40 50 60
the instantaneous growth rate of many bubbles, with many Number of faces F

different numbers of sides, through the formulB. It is FIG. 7. The difference in thédimensionlessrate of change of
shown in the inset to Fig. 7—all data lie close to BB),  yolume of a bubble wittF faces, calculated from our simulations
except af(for us unobtainablesmall F where the results of sing Eq.(1), and the value calculated according to the analytic

Cox and Forte$12] are useful. ~ formula (2). The inset shows the values, again next to the analytic
More instructive is the difference between the analytiCline, from which it deviates at smafi. Data are shown for volume

formula and our data, shown in F_ig. 7. Fee12, our d_ata ratios of V. /V=%(+),1(x),2(*),3(10), and 5@). The data for
are above and below the analytic line: it agrees with thesubbles with constant curvatur®j [12], rather than fixed volume,
suggestion that the analytic formut,,,,(F) approximates are more scattered, but useful for Idw
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TABLE Il. The growth rates, averaged over all simulations, for bubbles with few fdeesl2. They
differ significantly from the analytic equatioi®) [11], but show very little dispersion.

F 2 3 4 5 6 7 8 9 10 11 12

—dv?¥dt  5.632 4.655 3.967 3.326 2.849 2.350 1.899 1.506 1.130 0.760 0.453

acterizing the systenfsurface tension and average surfaceleads us to conjecture a value for the kissing problem for
area and (ii) some function of shape only. The structure foams: no more than 32 bubbles can be stably packed around
changes due to coarsening. The coarsening rate is the produgiie other of the same volume and no more than 12 in two
of a diffusion constantwhich depends on the material pa- dimensions

rameters, including chemical compositjorthat sets the — Although we do not tackle infinitéor, equivalently, peri-
characteristic time scale, and a function only of geometryodic) structures, we expect that these data will eventually
Here, we do not consider two other phenomena, drainage angad to greater insight into the Kelvin problem, since we are

film breakage, which cause deviations from equilibrium.  starting to understand better what happens for bubbles with
Using thesURFACE EVOLVER we have studied finite clus- petween 12 and 16 faces.

ters of bubbles to give information about the structure of
three-dimensional foam and a 3D coarsening law. This ap-
proach allows us to get a high level of detail and accuracy of
the relevant quantitieésurface area, pressure differepte
get a good insight into how foams coarsen. Our calculated We thank Professor K. Brakke for having distributed and
values of the growth law require no assumption about thenaintained hiSSURFACE EVOLVER program. This work ben-
curvature being small, and can be found for bubbles with arfited from a stay at the Isaac Newton Institute in Cam-
arbitrary number of faces. bridge, and, in particular, discussions with S. Hilgenfeldt, A.
As the volume ratio between the central bubble and itKraynik and J. Glazier. Financial support is gratefully ac-
neighbors changes, we find upper and lower bounds on thnowledged from the Ulysses France-Ireland exchange
possible number of faces, because the bubbles deform. Thigheme.

ACKNOWLEDGMENTS

[1] D. Weaire and S. HutzleThe Physics of Foam&larendon  [15] D. Weaire, S.J. Cox, and F. Graner, Eur. Phys. J7, B23

Press, Oxford, 1999 (2002.

[2] Foams, Emulsions and their Applicatigreslited by P. Zitha, J.  [16] J. Sullivan, http:/torus.math.uiuc.edu/jms/softwafd98.
Banhart, and G. VerbigiMIT-Verlag, Bremen, 2000 [17] K. Brakke, Exp. Math1, 141(1992.

[3] T.C. Hales, Discrete Comput. Geo@b, 1 (200). [18] R. H. Hardin, N. J. A. Sloane, and W. D. Smith, http://

[4] W. Thomson, Philos. Mag4, 503 (1887). www.research.att.com/njas/coverings(1994.

[5] D. Weaire and R. Phelan, Philos. Mag. Lé®, 107 (1994. [19] K.A. Brakke and F. Morgan, Eur. Phys. J.9453 (2002.

[6] J. von NeumanniVletal InterfacefAmerican Society for Met- [20] S.J. Cox, M.F. Vaz, and D. Weaire, Eur. Phys. J1E 29
als, Cleveland, 1952p. 108. (2003.

[7] J.A. Glazier, Phys. Rev. Let?0, 2170(1993.

[8] C. Monnereau and M. Vignes-Adler, Phys. Rev. L88, 5228
(1998.

[9] C.P. Gonatas, J.S. Leigh, A.G. Yodh, J.A. Glazier, and B.
Prause, Phys. Rev. Left5, 573(1995.

[10] J.A. Glazier and B. Prause, iRoams, Emulsions and their
Applications edited by P. Zitha, J. Banhart, and G. Verbist

[21] S. Hilgenfeldt, A. M. Kraynik, D. A. Reinelt, and J. M. Sulli-
van (unpublished

[22] A.M. Kraynik, D.A. Reinelt, and F. van Swol, Phys. ReVv6E
031403(2003.

[23] C. Isenberg,The Science of Soap Films and Soap Bubbles
(Dover, New York, 1992

(MIT-Verlag, Bremen, 2000 pp. 120. [24] K. Brakke (private communication
[11] S. Hilgenfeldt, A.M. Kraynik, S.A. Koehler, and H.A. Stone, [25] D. Weaire and J.A. Glazier, Philos. Mag. L&, 363 (1993.
Phys. Rev. Lett86, 2685(2001). [26] F. Graner, Y. Jiang, E. Janiaud, and C. Flament, Phys. Rev. E
[12] S.J. Cox and M.A. Fortes, Philos. Mag. Le88, 281 (2003. 63, 011402(2001. o
[13] J.H. Conway and N.J.A. SloanSphere Packing, Lattices and [27] M.A. Fortes and P.I.C. Teixeira, J. Phys.38, 5161(2003.
Groups(Springer, New York, 1999 [28] S. Hilgenfeldt, S.A. Koehler, and H.A. Stone, Phys. Rev. Lett.
[14] J. Leech, Math. Gaz, 22 (1956. 86, 4704(2001).

031409-6



