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Abstract. Simply respecting both scale and rotational invari-
ance, it is easy to construct an endless collection of theoretical
models predicting a Titius-Bode law, irrespective to their phys-
ical content. Due to the numerous ways to get the law and its
intrinsic arbitrariness, it is not an useful constraint on theories
of solar system formation.

To illustrate the simple elegance of scale-invariant methods,
we explicitly cook up one of the simplest examples, an infinitely
thin cold gaseous disk rotating around a central object. In that
academic case, the Titius-Bode law holds during the linear stage
of the gravitational instability. The time scale of the instability
is of the order of a self-gravitating time scale, (Gpg) /2, where
pa is the disk density. This model links the separation between
different density maxima with the ratio Mp/Mc¢ of the masses
of the disk and the central object; for instance, Mp /M of the
order of 0.18 roughly leads to the observed separation between
the planets. We discuss the boundary conditions and the limit
of the WKB approximation.

Key words: planets and satellites: general — solar system: gen-
eral — hydrodynamics — instabilities

1. Introduction

In a previous paper (Graner & Dubrulle 1993, hereafter Paper
I), symmetry considerations helped us predict that Titius-Bode
laws (geometric progressions for equal phase cylinders) gener-
ically arise in scale invariant rotating systems.

From a practical point of view, however, symmetry consid-
erations are from limited utility, since they only predict the gen-
eral shape of the laws, and not its fine details (such as the value
of the characteristic constants). These fine details intrinsically
depend on the model considered and require explicitly solving
the equations governing the system. Of course, the final result is
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independent of the adopted method, and brute force can be em-
ployed in any situation. However, the presence of symmetries
often provides both simplification of the algebra and elegant res-
olution of a problem. While the presence of rotational symmetry
is often taken into account when using cylindrical coordinates,
scale invariance is generally ignored. As a consequence, obtain-
ing fine details of the possible Titius-Bode law is awkward and
complicated.

The aim of the present paper is twofold. First, to explic-
itly determine on an academic example the fine details of the
laws predicted by Paper 1. Second, to elegantly use the scale
symmetry by introducing scale-invariant coordinates.

Among the general class of self-gravitating gaseous disks
(Sect. 2), often used in previous derivations of the Titius-Bode
law, we select the cold, flat self-gravitating disk (Sect. 3). This
model was only chosen for its simplicity, and not because of
any prejudice regarding its relevance for solar system forma-
tion. We only treat the axisymmetric case (no 6 dependence);
generalization to the non-axisymmetric case is possible, but te-
dious. We propose a set of dynamical equations, rewrite them
in a scale invariant form, and perform an usual linear stability
analysis (Sect. 4). We compare our results with the particular
limit of the WKB approximation (Sect. 5). Endly, we present ex-
plicit recipes to “cook up” other Titius-Bode laws within maybe
more realistic models, accounting e.g. for axisymmetry break-
ing, pressure, viscosity or finite disk thickness (Sect. 6). Our
conclusion follows (Sect. 7).

2. Symmetric disk models

Planets are suspected to have formed from a primordial solar
nebula. The most general equations describing such entity are:

Op+V(pv) = 0,
GM,
v+ (VW) = _%vp —Vh- T Ce 41V,
V3¢ = 4nGp. €))
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p, Vv, P and ¢ are the density, velocity, pressure and self-
gravitation potential; » is the viscosity, e, is the unit vector
in the radial direction, M¢ the mass of the central object and G
the gravitational constant.

Apart from its cylindrical symmetry, the set (1) exhibits an
interesting symmetry. Since it exhibits no other length scale than
r itself, it is invariant under the scale transformation:

Sa:r — Ar,
t — A2,
p — A7%p,
v — A2y,
P — AT*P,
v — AV,

¢ — A7l @

where A is an arbitrary real number.

A system invariant through all S, A real, is called a scale
invariant system; if a physical solution of (1) is not scale invari-
ant, then all its transformed through the S are also solutions
of (1).

It is important to point out that scale invariance is a very
strong constraint, often broken by boundary conditions, pressure
or viscosity prescription. For instance, if one adds to (1) the
polytropic gas law:

P x p?,

the scale invariance holds if and only if v = 4/3.

It is easy to check which extensions of the set (1) do or
do not break the invariance. As for the solar or giant planet
systems, most theories favor a low-mass protoplanetary disk.
In that case, self-gravity is weaker than central gravity field.
The motions around the central object are then approximatively
Keplerian:

1/2
GMC) es, 3)

v=rey = <

r
where r is the radial cylindrical coordinate, ey the unit vector in
the azimuthal direction and {2 the Keplerian frequency. Another
consequence is that along the z axis, the disk is in hydrostatic
equilibrium: the pressure gradient counterbalances the gravity
field projected on z; equivalently, the sound velocity c; is simply
the product of the Keplerian frequency by the height H of the
disk:

1/2
o = (%) - HQ. @

We can conveniently define the surface and linear mass densi-
ties:

o(r) = /P(T, z)dz,
A(r) = 2wro(r), &)
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and completely explicit the action of the scale transformation
2
Sp:Q — AT2Q,

cs — A2
H — AH,

o — A %0,

A — A7 ©)

Cs,

3. Scale-invariant equations for the flat, cold disk

In the cold, flat, accretionless, rotating self-gravitating disk,
there is no viscosity and vertical dynamics. The only physical
processes are the self-gravitation competing with the stabiliz-
ing Keplerian central gravity field. This classic academic case
has been frequently used in galactic dynamics, and is there-
fore well documented (see e.g. Fridman & Polyachenko 1984).
Polyachenko & Fridman (1972) were the first to use it to explain
Titius-Bode law. Their approach was however based on a two-
dimensional conjugated-space treatment of the Poisson equa-
tion which dissimulates actual exponential divergences along
the z axis. Here, using the scale-invariance symmetry enables
us to avoid such problems.

Rather than writing the equations in coordinates (r, z, t), we
introduce:

o the scale-invariant variables

In(r/ro)
= r3/%, )

where 7 is a still undefined normalizing radius; we refer to 7
as a pseudo-time, since it is not homogeneous to a time.
e the scale-invariant functions
iz, 7) = r'/v(r, ),
o(z,7) = r'Pvp(r, 1),
¢($a T) = T¢(T’ t)’

Gz, T) = rza(r, 1),

Mz, T) = rAT,b). ®)
The change of variables (7) implies:
0 = 0y — %7'67,

8, = r3/%9,. 0)

Since we treat here only the infinitely thin, zero temperature
disk, in (1) we set P = 0 and p(r, z,t) = o(r, t)6(z), where 6 is
the Dirac function; so that the vertical velocity along z vanishes
everywhere. The set (1) simplifies; in the plane z = 0, where
the mass density is non-zero, it writes:

AN — (% — 0, + %Ta,)(i\a) =0, (10)

O, — a(% —O0p + %Ta,-)ﬁ, — =1 -0, + %Ta,)q"s - GMc¢

o1 3
00+ (5 + 0y — 570:)5 = 0. (11)
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We have not written Poisson equation, because we do not ex-
plicitly use it. Indeed, there are two main ways to treat Pois-
son equation. The conjugated-space treatment develops & and
 over a convenient set of eigenfunctions. In the usual cylindri-
cal coordinates (7, 8, z), an obvious choice if the disk is finite is
Bessel functions. Yabushita (1966, 1969) successfully applies
this method to Saturn’s dust ring. However, we were not able to
find a set of eigenfunctions of scale-invariant coordinates which
could solve Poisson equation without making the potential ¢ di-
verge at large scales in z.

We thus favor the real-space treatment, in which we have
to evaluate ¢ only in the z = 0 plane, and formally treat only
two-dimensional equations; we thus avoid introducing unphys-
ical divergences. The potential ¢(r) is a sum of two different
contributions, from the mass distributed inside the orbit r (at
aradius R = 7Y, Y < 1) and outside the orbit (at R = /Y,
Y < 1). We respectively note 7,,,;,, and 7,4, the minimum and
maximum radius of the disk, defined as the locations where the
disk density goes to zero. They are yet unrestricted and may
vary up to Ty, = 0 and 7,45 = 00. Using:

#(r) = —G / "
60=0 Jr=

=Tmin

oRdRd6
— 2rRcos 6 + R2)!/2’

(12)

¢ can be written in term of the complete elliptic integral K
(Gradshteyn & Ryzhik 1980), such that 2K (0) /7 = 1 and K(1—
¢) diverges more slowly than In(1/¢), to obtain:

2K(Y)

1
s= G [ 20y

1
—G/ —/\( )2K(Y) dy.

Tmaz

Since [ A(R)dR is finite, and by definition A(rpin) =
A(Tmaz) = 0,itis easy to check that both ¢ and d¢/dr converge.
In scale-invariant notations, we simply introduce y = In(Y),
ZTmin = I(Tmin/T0) and Tyngz = IN(Tye, /7o) and obtain:

(13)

- 0 . y
¥er)= -G Mo+, Dy,
Tmin—T Q
0 . Y
-G Az — vy, T)@eydy. (14)

T—Tmaz

4. Linear stability analysis
4.1. Perturbed equilibrium state

We now study the stability of the simplest scale-invariant equi-
librium state, with no radial accretion (i = 0), in which the
scale-invariant azimuthal angular velocity is:
Q2(x) = G(Mc + Meg(x)). (15)

M., is the effective gravitational mass of the dlSk felt at the
position z, defined as:

Meg(w) =(0; — Do, (16)
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where ¢ is the gravitational potential defined via (14) using the
equilibrium linear density A = Lo(z). Note that the gravitational
disk mass M., differs from the real disk mass Mp, which is by
definition (5, 8) of A:

Mp = / - Lo(z)dzx.

min

17

Perturbations around the equilibrium state will be labeled with
an index 1 and with the tilde omitted. They obey the linearized
equations:

8Tu1 - 296’01

(1-8,+ %T&)dn

0

a‘r'Ul + %(Qe + 6:nﬂe)ul

(97-/\1 — ;Loul + (3;,; — %TBT)(L()’U,l) 0. (18)

4.2. Boundary conditions

The resolution of such problem of course depends on boundary
conditions. The most natural are A;(Zmin) = A\ (Zmaz) = 0.

As usual, the stability analysis is simplified with the use of
a set of eigenfunctions of the problem. In the present case, the
scale invariance translates into a translation invariance for the
variable z. A natural choice of eigenfunctions is therefore the
set of Fourier modes

{¥k(z) = explikz]; k=nko; |n|=0,1,2..},

where kg is the fundamental wavenumber:
T T

ko = = .
0 In(rmaz / Tmin)

(19).

Tmaz — Tmin

The boundary conditions are then satisfied provided either ry =
Tmin OT To = T'mqz. The solutions of (18) will then be expressed
as linear combinations of sin(nkyx).

4.3. Coupling between modes

Once the equilibrium density Lo(z) has been specified, the sta-
bility analysis can be performed via a decomposition of both
equilibrium and perturbed quantities on the set of eigenfunction,
and then projection of the Egs. (18) on each mode. In general,
the resulting equations couple modes with different wavenum-
bers via (i) cross terms like Lou; or Q.v;, or (ii) edge effects
such as in M,4(x); or ¢;(z), since the bounds in the integral
also depend on z.

The type (i) couplings disappear in the special case Lo(x) =
L = cst. This case corresponds to a surface density decreasing
like r=2. It is the only solution of (1) which is scale-invariant.
From the planetologist point of view, such solution has no spe-
cial significance, although it is favored by some time scale ar-
guments regarding planet formation (Lissauer 1987). From our
point of view, it is just a convenient case, because it leads to a
mode decoupling and makes the computations much simpler.
Any real Titius-Bode hunter should consider starting with more
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realistic density distributions, e.g. in order to get constraints
on their shape and amplitude. As explained in the conclusion,
however, we do not encourage anyone to try this direction.

The type (ii) couplings formally disappear when 7, = 0
and 7,4 = 00. Such case has no physical significance, es-
pecially for simple monotonic surface density o(r), because it
implies considering a disk with infinite mass. Physically, it cor-
responds to the idealized “large box” approximation, in which
the Fourier modes become continuous (kg — 0). In our case, we
do not directly use this limit, because of the divergence involved
on the disk mass Mp. However, we indirectly use it by noting
that, formally, the density is zero outside [7yin, Tmaz]. We can
therefore extend to O the lower limit in both integrals involved
in (13) or equivalently to —oo in (14): we only have to multiply
their integrand by a weight function, which cuts off contribu-
tions corresponding to low or high r. The simplest weighting
procedure which preserves the scale invariance and decouples
modes only substitutes to K (y) in (13) the function K (y)— K (0).
This is an approximation, because the corresponding cut off for-
mally occurs only at » = 0 and r = co. We therefore expect
this approximation to work at best in the local approximation
(k > 1) where the location of the boundaries is irrelevant.

4.4. Decoupled modes

With these two assumptions, both the gravitating disk mass M.,
and the k Fourier component ¢y of the first order potential ¢y,
take very simple expressions:
Meg = LN (O),

¢r = —GN(K)Ax,
where A is the k& Fourier component of A;, L the constant

scale-invariant equilibrium density and N (k) the complex non-
dimensional form factor:

0
Nay= [ o 2EED-KO),

. /" - 2K @) = KO)

(20)

@1

The appendix develops a convenient approximation of N(k),
valid for all k. Its main properties are N(0) =2In2 —1 ~ 0.39
(see Gradshteyn & Ryzhik 1980, formulae 6.141 and 6.142) and
N(k) ~ |k|~! — 0.5 ik~ for large k (see appendix). Note also
that the effective gravitational mass and the actual disk mass
are related via the fundamental (smallest) wave number ky, as
defined in (19):

Mey _ N(Oko

T . (22)

In the following, we only use the effective gravitational mass
M.g4, because it is independent of the location of the bound-
aries. However, when typical numerical values are needed, we
choose the value of M., so that, for 7,45 /7min = 100 (ap-
proximatively the ratio of Pluto perihelion to Mercury perihe-
lion), or equivalently ko = 0.68, it corresponds to Mp /M = 1,
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Mp/M¢ = 0.3 and Mp/Mc = 0.03. The first case is typical of
a disk around a TTauri star; the second is the largest disk which
is stable with respect to the gravitational instability studied by
Shu et al. 1990; the last case corresponds to the minimum solar
nebula, estimated with all planetary masses spread up to Pluto’s
orbit, and augmented up to solar composition (Kuiper 1951;
Prentice 1977). Translated into M., the three cases lead respec-
tively to Meg/Mc = 8.4 x 1072,2.5 x 1072 and 2.5 x 1073.

4.5. Temporal stability

In the formulation we adopted, the stability analysis becomes
especially simple. All the modes decouple; the evolution of a
given k component obeys the equations:

Uk ] QT(k—3) 20, Qi@k—1) Uk
87 Vg = Z —%QGA 0 0 Vg

i —(k—3) 29.T Q2TGk-1) | |
where we use the following notations:

Ik = A/L,

Q2 = G(Mc + M),
Q2 = GLN(k),

T = 37/2,

A= 1+02T2 (24)
Note that our scale-invariant notations have the following phys-
ical dimensions:

u, v, 7 LT Qe QU — [meter]’/? x [second] !,
¢1,GMc — [meter]® x [second] 2,
L, A, MC’: Meg - [kg]a
k,z,lx, N(k), A — dimensionless. (25)

As a consequence of scale-invariance, the stability problem is
explicitly pseudo-time dependent. As we see below, this allows
for both exponentially and algebraically growing instabilities.
We search for the perturbed quantities a pseudo-time depen-
dence:

.

e, (), L) = o % gy v low). (26)

Therefore, the system is stable (resp. unstable) at the pseudo-
time 7 if the real part of foﬂ’ wy 1s positive (resp. negative).
Using (23), it appears that wy, is one of the eigenvalues of the
3 x 3 matrix and satisfies:

5
wp =0, or wiA+ QiT(E — 2ik)wy

3 5
+HOZ + G — 5k - k2] = 0. 27)
The neutral mode (wg, = 0) is linked with our description of the
system as dissipationless: as soon as viscosity is included, this
mode steadily decays over a viscous time scale. The two other
modes solutions of (27) determine the stability of the system.
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Early stage
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Fig. 1. Growthrate of instability as a function of the wavenumber k, for
the flat disk problem, at the early stage of the evolution, and for various
values of the ratio Me,/Mc: Mey/Mc = 8.4 x 10™2 (dashed dot
line); Meg/Mc = 2.5 x 1077 (dashed line); Mey/Mc = 2.5 x 1073
(dotted line). The growthrate w is expressed in units of (GL)'/2. Solid
line marks the critical growthrate w. below which the late stage is
algebraically stable

4.6. Early stage

In the early stage (|Q2;|7 < 1) of the evolution, wy, is solution
of:

wi + Q2+ (% - gik —kHQZ = 0. (28)

Eq. (28) is characterized by the absence of terms linear in wy,.
Moreover, the imaginary part of the term independent of wy, is
not zero. Therefore, at any wavenumber, one of the two solutions
of (28) has a positive real part, i.e. the system is unstable for
any k during the early stage.

Figure 1 shows the variation with & of the real part of the
unstable solution of (28) expressed in units of v/GL, for various
values of the ratio M.y /Mc. The time scale of this early-stage
instability is quite different for high and low wavenumbers: low
wavenumber modes are slowly growing (Re(wg) < VGL),
while higher wavenumber modes are much more unstable. The
transition between the two regimes is characterized by a “bend”
in the curve w(k), which occurs at a critical wavenumber k..
Visual inspection of Fig. 1 gives k. of the order of 5 to 20 for
both massive disks and 150 for the low mass disk (respectively
Meg/Mc =84 x1072; 2.5 x 1072; 2.5 x 1073).

4.7. Late stage

In fact, as we now show, this critical wavenumber marks the
transition between the stable and unstable regime, because low
wavenumber modes are stable at later stages of the evolution
(IQ%|7 > 1). For such low wavenumbers, the late stage be-
havior is algebraic instead of exponential: wy ~ a/7 to lowest

273
Late stage
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Fig. 2. Exponent a of the power law in the late stage of the evolution,
as a function of the wavenumber & and for various ratios M.,/Mc:
Meg/Mc = 8.4 x 107% (dotted line); M.y /Mc = 2.5 x 102 (dashed
line); Meg/Mc = 2.5 x 1073 (dashed dot line)

order in 1/7, i.e. the perturbed quantities go like 72, where the
exponent a of the power law obeys:

5 N 3 5
2 - — 21 _£ - — —gk — 2 = U.
a +(2 2ik)a + o2 + 5 2zk k=0 29)

Thereal part of the solutions of such equation is always negative,
as shown in Fig. 2 for various disk masses. The perturbations
undergo a power-law decay, therefore low wavenumbers are
algebraically stable ar large 7.

Of course, this argument is relevant only if the system never
leaves the linear regime, i.e. if the initial infinitesimal pertur-
bations never reach relative amplitude of order unity. To esti-
mate which wavenumbers are likely to stay in the linear regime,
we may proceed as follow: the early stage evolution is valid
roughly up to a pseudo-time 19 = ||}, after which the
late stage description (algebraic decay) becomes relevant. Dur-
ing this time, a perturbation increases by a factor of order of
exp[Re(wk)r=0|Q%|~!]. We now decide that this increase is suf-
ficient to make the perturbation non-linear provided the factor
of increase is larger than 10, so that the perturbation has grown
by more than an order of magnitude. This is a rather crude cri-
terion, but it enables to get the order of magnitude of the critical
wavenumber. We therefore get a rough criterion for validity of
the late stage description, which defines wy:
Re(wg)r=0 < we = || In10. (30)
The curve w.(k) has also been drawn in Fig. 1. It delimitates the
linearly stable and unstable regimes. The critical wavenumber
for stability k. can then be computed more precisely as the
crossing between the dispersion relation w(k) and the critical
curve wc(k): by definition of k¢, wc(kc) = w(k.). We respectively
find k. = 3.2, 6.69, 26.66 for M.,/Mc = 8.4 x 1072, 2.5 x
1072, 2.5 x 1073, which confirms our previous estimate based
on a visual inspection of Fig. 1. We have also computed the
ratio My /Mc for which k. = 11.8, 13.4, 15.5 and 18.7 (see
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discussion): it is respectively M.,/Mc = 0.01, 0.008, 0.007
and 0.005.

5. Comparison with WKB analysis

It is interesting to compare this stability analysis with the usual
WKB analysis. In scale invariant variables, it is easy to check
that the WKB approximation corresponds to k > 1 and 7 = 0.
Within these two limits, our equations (21, 24, 27) reduce to:

0
w? + Q% — GLIk|

GLIK™, @
0. (32)

Equation (32) is obviously the scale invariant equivalent of
the well-known dispersion equation (Fridman & Polyachenko
1984):

w? + Qr)? = 20GE(r)|k(r)| = 0, (33)

since w? = r3w?, O2 = r3Q%(r), k = rk(r) and L = 27r25(r).
In the approximation (32), the disk is stable for low

wavenumbers and unstable for wavenumbers larger than the

threshold kw x g which writes, in our notations:

o Mo

o =NOa+ .

kwks = )- (34)
Such wavenumber corresponds to the location of the“bend” ob-
served in Fig. 1. More precisely, it is respectively kwxp =
5, 16, 156 for Mey/Mc = 8.4x1072; 2.5x1072; 2.5x1073.
Such small-scale, early-stage analysis is compatible with ours
for massive disks, and is oversimplified for light disks, large
scales or late stage.

6. Discussion
6.1. Derivation of a Titius-Bode law

Low wavenumbers are linearly stable; while large wavenumbers
are linearly unstable and enter a (potentially stabilized) non-
linear regime. Our analysis does not investigate the selection of a
particular wavenumber amongst all the unstable modes. Titius-
Bodes hunters may favor the following back-of-the-envelope
calculation. The only typical length scale of our idealized flat
disk originates from k.. Since the structure of the solutions to
(23) are proportional to sin(k.x) the density extrema increase
geometrically with r:

Tn+l

= exp[27/k.]. (35

n
If these extrema corresponded to the sites of planet formation,
the observed planetary distances distribution (see introduction)
would obey:

27

c= 'ln(—K), (36)

ie. k. = 11.8 for the solar system, or k., = 13.4, 15.5 and
18.7 for the satellite system of respectively Jupiter, Saturne and
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Uranus. This is achieved respectively for M., /Mc = 0.01 (so-
lar system), 0.008, 0.007 and 0.005 for the Jupiter, Saturne and
Uranus system. Assuming that the initial disk was extending
between the innermost and outermost planet or satellite, we ap-
proximatively get ©'maz/Tmin = 100 for the solar system, and
Tmaz/Tmin = 25 for the disks around giant planets. The ob-
served Titius-Bode laws are then recovered, provided the mass
of the initial disks were respectively Mp/Mc = 0.18 (sun),
0.07 (Jupiter), 0.06 (Saturne) and 0.04 (Uranus). However, this
is a rather cheap way to obtain a Titius-Bode law.

6.2. Elaborate models

Indeed, many more complex linear or non-linear models, e.g.
mentioned in Paper I, also lead to Titius-Bode type laws. In any
disk, non-linearities introduce characteristic length scales and
the resulting k is a priori very far from k.. Even within the lin-
ear regime, more realistic boundary conditions would select a
different mode. Moreover, the actual selection of the instability
wavelength probably arises from the competition with another
physical mechanism, which result in a maximum in the disper-
sion relation w(k), i.e. a mode growing faster than the others. A
typical example is the viscous stabilization of large k.

Such processes can be included in the type of model de-
scribed here without breaking the Titius-Bode law, provided
they respect the scale invariance (2,6). Explicit recipes to cook
up a more complex Titius-Bode law include a vertical scale
height H o r, a temperature profile T o< 7!, a turbulent vis-
cosity v = ac? /2 with « constant and ¢; ~ 7~'/2, 7=2 force
fields, a vortex size o r, a state equation P o p*/3, a constant
Mach number, etc... Therefore, the possibilities of cooking up
Titius-Bode laws are endless and only restricted by our own
imagination.

6.3. Axisymmetry breaking

Non axisymmetry and z dependence can also be included, at
the price of adding to (7) the two scale-invariant variables 6
and ¢ = z/r. Breaking the rotational invariance is as rich as
breaking the scale invariance. For instance, the first azimuthal
deformation mode m = 2 corresponds to an elliptical structure;
a fundamental m = 2 and smaller contributions from modes
with high, even values of m lead to a bar i.e., in a rotating
disk, to a barred spiral. Asteroid belt or giant planet annuli are
axisymmetric; on the opposite, planets and satellites are Dirac
peaks 6(6), or at least correspond to high, odd values of m
azimuthal modes.

Note that the decoupling (P4) we assumed in Paper I be-
tween radial and azimuthal perturbations is effective in at least
one simple case. A particle placed at a radius r feels an axisym-
metric gravitation force from an annulus of matter, even inho-
mogeneous, placed at a different radius r/, provided the annulus
rotates relatively to the particle. For small k (' far from r) the
relative angular rotation is of order of the keplerian frequency.

~ Setting aside resonance effects, the rotation of the annulus av-

erages out the variations of the force it exerts, if there is a large
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number of rotations during the azimuthal accretion stage. The
self-gravitation sets the typical radial instability pseudo-time
scales Qx| ~!. The validity criterion is thus Qx| < S, ie the
disk mass is not much larger than the instability threshold.

Current theories of planet formation favor growth of plan-
ets or satellites via coagulation of larger and larger particles,
i.e. instability of very large k. On the other hand, models
of formation of protoplanets and protosatellites through self-
gravitation based on the Titius-Bode law set the constraint
11.8 < k < 18.7. Both types of theories are compatible if
a gravitational instability first created denser annuli obeying a
Titius-Bode law, followed by particles coagulation within these
annuli. Such scenario requires rather massive disks to start with
(Mp of the order of a few tenth the mass of the central object,
from our analysis). The uncertainities governing the current the-
ories of planetary systems formation are too large to rule out
such results. In the case of the solar system, however, this result
corroborates the conclusions obtained via turbulent disk models
(Dubrulle 1993).

7. Conclusion

Noting that gravitation sets no intrinsic length scale, due to its
infinite range, we explain how to obtain scale-invariant equa-
tions on the simplest example of a self-gravitating disk. We use
them for a complete linear stability analysis, compatible with
existing models of protoplanetary disks. We compute the critical
wavenumber above which self-gravitation instabilities can de-
velop and show density maxima positions 7, obey a Titius-Bode
law: z,, = In(ry, /1) = 2nw/k = n1n(K).

Our study shows that there are potentially an infinite num-
ber of ways of obtaining Titius-Bode laws, providing one strictly
sticks to processes which do not break the scale invariance. Thus
K is extremely sensitive to various parameters such as disk
mass, radial and vertical density distribution, but also bound-
ary conditions, viscosity, temperature, or chemical composi-
tion. Obviously, the single (and controverted) present value of
K (= 1.7 for the solar system) can not even give access to the
mass of the original disk.

In conclusion, linear or non-linear Titius-Bode laws can now
be firmly considered as at worst numerology, at best an outcome
of some simple symmetries; but even the value of the constant
K does not set any relevant constraint on cosmogonic models
of solar system formation.
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Appendix

In this appendix, we build a convenient approximation to the
form factor N(k); the quality of the approximation will be
checked by comparison with a numerical value, obtained by
direct integration of (21).
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Fig. 3. Real (dashed line) and imaginary (dashed dot line) part of
the form factor N(k) given by (41), as a function of the wave-
number, k

Table 1. Form factor N: comparison between the exact numerical inte-
gration of (21), label num, and its analytical approximation (41), label
appr. Note the good agreement at small k, and the large-k variation
Re(N) ~ |k|™', Im(N) ~ —k 2.

k N(k)num N(k)appr
0 2In2-1=0.39 0.38
10 0.15—0.008 ¢ 0.1 —0.005 ¢

100 0.015 —0.00008 ¢ 0.01 — 0.00005 <

As a first step, we checked numerically that over the range
[0, 0.99] the elliptic integral K (y) can be approximated, within
a few percent, by:

K)=K(@0)—-0.5yIn(1 —y). 37N
Therefore, we approximatively write:
0o ) o
N(k)= -05 / e(’k+1)y¥dy
0 ) —eY
—0.5 / ek —2-1n—qﬂ_—f—2dy. (38)

Both integrals are dominated by the contribution around y = 0,
where the integrand becomes singular. In this neighborhood,
In(1 — e¥) ~ In(—y). Since it brings the largest contribution,
we use In(—y) as an approximation of In(1 — e¥) in the equation
(38). After a change of variable v = —y, we therefore obtain:

™

~05 / ok 210
0 T

Nk)= -05 / e~ (kv 2In(v) dv
0
39

The two integrals can be computed exactly, using (Gradshteyn
& Ryzhik 1980), formula 4.331):

/ * eh In(u)do = —%(c +1n 1), [Re() > 0], (40)
0
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where C = 0.577 is Euler’s constant. We recall that the notation
In(z) when z = |z|e* is a complex number stands for In(|z|)+36.
We obtain the following approximation for N (k):

(41)

N(k)=%(C+ln(l+ik) .\ C+1n(2—ik)).

1+ik 2 —ik

The real and imaginary part of N (k) obtained from (41) are
plotted in Fig. 3. Table 1 shows the comparison between this
analytical, approximated expression of N (k) and a few exact,
numerically integrated values. The approximation (41) is satis-
factory for our purpose. '

Thanks to this approximation, the asymptotic value of IV (k)
can be found via a simple expansion. We find:

1 1
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