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Equilibrium states and ground state of two-dimensional fluid foams
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We study the equilibrium energies of two-dimensional~2D! noncoarsening fluid foams, which consist of
bubbles with fixed areas. The equilibrium states correspond to local minima of the total perimeter. We present
a theoretical derivation of energy minima; experiments with ferrofluid foams, which can be either highly
distorted, locally relaxed, or globally annealed; and Monte Carlo simulations using the extended large-Q Potts
model. For a dry foam with small size variance we develop physical insight and an electrostatic analogy, which
enables us to~i! find an approximate value of the global minimum perimeter, accounting for~small! area
disorder, the topological distribution, and physical boundary conditions;~ii ! conjecture the corresponding
pattern and topology: small bubbles sort inward and large bubbles sort outward, topological charges of the
same signs ‘‘repel’’ while charges of the opposite signs ‘‘attract;’’~iii ! define local and global markers to
determine directly from an image how far a foam is from its ground state;~iv! conjecture that, in a local
perimeter minimum at prescribed topology, the pressure distribution and thus the edge curvature are unique.
Some results also apply to 3D foams.

DOI: 10.1103/PhysRevE.63.011402 PACS number~s!: 82.70.Rr, 82.70.Kj, 83.80.Hj, 02.70.Rr
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I. INTRODUCTION

Fluid foams or cellular fluids are a class of materials t
consist of a collection of bubbles surrounded by a continu
phase which tends to minimize its surface energy under
volume constraint. The exact description of the ground s
is a deep mathematical problem, while the characteriza
of all the metastable states provides insights into the phy
of foams as well as industrial applications. Our motivatio
to study fluid foams are thus threefold.

For mathematicians, foams have long been an impor
tool to provide insights into the classic ‘‘isoperimetric pro
lem’’: how to determine the minimal perimeter enclosing
cluster of N bubbles with known areas. Hales@1# recently
proved the 2000-year-old honeycomb conjecture@2#: a clus-
ter of two-dimensional~2D! bubbles of the same are
reaches its minimum perimeter when all bubbles are reg
hexagons. The conjecture is true only if the bubble clus
has no boundaries, i.e., the cluster is either infinite or
periodic boundary conditions. Besides this result, only
caseN52, i.e., the double-bubble problem, has been sol
in 2D and 3D;N53 and larger in 2D and higher dimension
have been partly studied@3–10#. Here we use the physics o
equilibrium energy to find the perimeter ‘‘minimizer’’ in
cases that have thus far escaped rigorous study, inclu
largeN, real boundary conditions, area, and topological d
order dispersity. We estimate the value of the perime
minimum, and conjecture the corresponding patterns to
candidates for the minimizer. We hope to provide insight
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future rigorous mathematical proofs.
For physicists, foams are a model for a class of mater

that minimize surface energy: soap foams, emulsions, m
netic garnets, and even grain boundaries in polycrystals@11–
17#. They share many common features of a cellular str
ture, including Plateau’s rules~see below! and empirically
observed topological and geometrical correlations@18#. Here
we derive more general consequences of the energy min
zation. Open questions we aim to answer include the follo
ing: Given an image of a foam can we determine whether
foam is stressed and deformed? How regular are bub
shapes at equilibrium? How do topology~number of neigh-
bors of a bubble!, pressure, and energy relate? What va
ables best describe the foam on a mesoscopic scale? Wh
pentagons and heptagons tend to cluster in pairs in
foams?

More practically, understanding foams has technologi
importance. Industrial applications of foams, ranging fro
food and shaving cream to fire fighting and oil recove
@12,16,17#, depend on their mechanical properties, which
not yet well understood. Foams support small stress lik
solid, but flow under sufficiently large shear like a flui
when the bubbles rearrange from one metastable config
tion to another. This solidlike to fluidlike transition depen
sensitively on the foam’s structure@19#. Hence understand
ing foam structure is an important step toward predicting
mechanical properties, e.g., the quasistatic stress-strain
tionship. Moreover, the structure of fluid foams determin
the structure of solid foams produced by solidification,
cluding: metallic foams in automobiles, pumice in volcano
polymeric foams in filling materials, and food foams. O
present approach can potentially also provide a deeper
©2000 The American Physical Society02-1
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FIG. 1. Ferrofluid foams with fixed areas.~a! Annealed FFF image with free boundary, area dispersitydA50.443Ā, and wall thickness

50.126Ā1/2. The only heptagon is indicated by a number 7. See Sec. III A for preparation method.~b! A. Freshly formed FFF with highly
distorted bubbles. B. The same foam after an avalanche of relaxational bubble rearrangements. C. The same after forcing a f
relaxations. Scale bar length is 20 mm.
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derstanding of other more complex and heterogeneous m
rials which share one or more characteristics of fluid foa
e.g., dry and wet granular materials, aggregates of vesic
biological cells, fracture patterns, and convection cells in
gregates.

Our starting point is two-dimensional noncoarseni
foam. Such patterns result from surface energy minimiza
and capture the essence of any foam at a given time. Fo
are almost always at quasiequilibrium because the bu
walls equilibrate on a very short time scale after a mecha
cal perturbation. The area distribution, of course, var
However, the processes that cause area changes, su
coarsening, wall breakage, cell division, and cell nucleati
all act on a much slower time scale, and thus can be
glected in our current study of configuration energy. W
hope our understanding of 2D foams will clarify 3D foam
We will indicate when our results apply to 3D.

We first present our theoretical, experimental, and
merical methods. Section II estimates the global ene
minimum, and shows that experimental and simulated
laxed foams tend toward it. Sections III–V treat the ene
of a real foam as perturbations around the ground state in
weak disorder limit: corrections from area disorder, topolo
cal disorder, and boundary conditions to the global mi
mum, respectively. Section VI summarizes the implicatio
of our results.
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A. Formulation

We use the word ‘‘boundary’’ as the external limit of
foam, and ‘‘edge’’ as the thin fluid line between tw
bubbles. For a foam withN bubbles with given areas$Ai ,i
51, . . . ,N% @e.g., Fig. 1~a!#, the energy of such a foam i
simply the sum of edge lengthsl i j between bubblesi and j:

H5g (
0< i , j <N

l i j , ~1!

where i 50 denotes the medium that surrounds the foa
Hereg, in J m21, is the energy cost of a unit line of a wal
the ‘‘2D surface tension’’ or ‘‘line tension’’ of the foam. In
an experimental foam, an edge contains two interfaces
tween the edge fluid and the inner fluid. Equivalently, we c
write

H5
g

2 (
i , j 50

N

l i j 5
g

2 (
i 50

N

Li , ~2!

where l i i 50, Li5( j l i j is the perimeter of bubblei, and
g/2 is the usual surface tension between both fluids times
height of the bubble wall in the third dimension.

At equilibrium, i.e., in a local energy minimum, the foam
obeys the Plateau rules~see@12,14,17# for physical explana-
2-2
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EQUILIBRIUM STATES AND GROUND STATE OF TWO- . . . PHYSICAL REVIEW E 63 011402
tions and@4,5,7,8# for mathematical demonstrations!: bubble
edges are circular arcs that meet in triples at 2p/3 angles@5#.
According to Laplace’s law their algebraic curvatures (k i j
52k j i .0 when bubblei is convex compared with bubbl
j ) are related to the 2D pressurePi inside bubblei:

k i j 5
Pi2Pj

g
. ~3!

Thus the algebraic curvatures of the three edges that me
the same vertex must add to zero@8#:

k i j 1k jk1kki50. ~4!

Equation ~4! holds for any closed contour crossing mo
edges. It is also valid in 3D, withk the mean curvature of a
bubble face.

Mathematically, for a given foam consisting ofN bubbles
of fixed areas, finding the global minimum~ground state!
and local minima~equilibrium states! of the foam energyH
is equivalent to minimizing the sum of all bubble perimete
In this sense, the problem is purely geometrical. The surf
tension and average bubble areaĀ scale out; the details o
the foam enter only through the distribution normalized ar
Ai /Ā. Moreover, if we draw a path from bubble 1 to bubb
i, the sum of the curvatures of all edges crossed determ
Pi /g directly from the foam’s image, up to an additive co
stantP1 /g; Eq. ~4! ensures that the resulting measuremen
P/g is unique. The problem is the same forany foam, and
more generally for any perimeter minimization, even ifH is
not proportional to the perimeter@20#.

In the same spirit, we make the following assumptio
~which we can relax later!.

~1! We assume that each bubble encloses a fixed m
which relates its area to its pressure. We further assume
compressibility; thus each bubble’s area is constant.

~2! We consider only isotropic surface tensions. Most r
foams require corrections: microscopic or long-range in
actions, external force fields, or surface tension anisotro
We do not consider the Marangoni variations of surface t
sion.

~3! If the continuous phase occupies a fractionf of the
foam, the mathematical ideal case corresponds tof50
while actual materials have a finitef. We assume the ‘‘dry
foam’’ limit f!1. We assume that the thickness of t
bubble walls is uniform throughout the foam and scales l
f. We neglect drainage and Plateau borders. This restric
makes sense because all physically relevant quantities ha
regular limit whenf tends to 0.

~4! In a perfectly ordered foam, i.e., the honeycomb str
ture, all bubbles are hexagons with the same area. For
sons that will soon become clear, we consider weakly dis
dered foams ‘‘close to a honeycomb structure,’’ where b
the area and the edge number distributions have small v
ances. Despite their weak disorder, such foams may
long-range orientational and translational order and thus m
be homogeneous and isotropic on large scales. We do
consider infinite foams, which can have an infinite varian
of area distribution.
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B. Experiments

As an experimental model, we choose ferrofluid foa
~FFF’s!, which we can easily manipulate to produce lar
distortions or to force relaxations. Good image contrast, c
timeter length scales, and few second local relaxation tim
facilitate observations.

A detailed description of FFF’s has appeared in@21#. A
FFF is an immiscible mixture of an ionic magnetic flu
~aqueous black magnetic liquid! and oil~white spirit! in frac-
tions ranging from 7%-93% to 13%-87%. The fluid mixtu
is trapped in the 1 mm space between two parallel 10310
cm2 Plexiglas plates. A homogeneous magnetic field o
kA/m perpendicular to the plates induces the cellular str
ture and fixes the bubble edge thickness. Figure 1 show
equilibrium FFF picture; the magnetic fluid forms dark line
We measure areas directly from the images and edge len
from skeletonized images~foam edges shrunk to lines wit
single pixels!. The same oil as that filling the bubbles su
rounds them. Preparation conditions fix the bubble are
which vary very slowly~time scale;104 s in an ac field,
.106 s in a dc field!.

A FFF behaves like a 2D soap foam@22#. For an oil-water
surface tension of 15 mN/m and a bubble size of 1 cm, a
Fig. 1, the magnetic dipolar interaction energy and the th
mal energykBT are'2% and'10216 of the surface tension
times a bubble diameter, respectively. As a consequence
FFF obeys the Plateau rules.

C. Simulations

We use the extended large-Q Potts model, which allows
large numbers of bubbles,N@1, no fluid fraction f50,
fixed bubble areas, a large range of area distributions,
large foam distortions@19# @Fig. 2~a!#. The foam is simulated
at zero temperature and bubble edges relax quickly u
perturbation; i.e., the foam is almost always at equilibriu
like soap froth.

The model treats a foam on a 2D lattice by assigning
integer index to each lattice site. Domains of like index a
bubbles. Each pair of neighbors having unmatching indi
determines a bubble wall and contributes to the bubble w
surface energy. Thus energy minimization through Mo
Carlo dynamics minimizes bubble perimeters. Bubble ar
are the number of lattice sites for each index; an area c
straint keeps the bubble areas constant. To ensure that
face tension and measurements are isotropic and insens
to the lattice@23#, the energy for the Monte Carlo evolutio
is evaluated with fourth nearest neighbor interactions. T
edge lengths and perimeters are determined using
weighted second nearest neighbors:l 5(A221)N11(1
21/A2)N2 , with N1 andN2 the number of nearest neighbo
and next nearest neighbors at the edge, respectively.
method overestimates the edge length at most by 1/N, N
being the number of lattice sites at an edge. Thus the erro
less than a few percent in the simulations presented her

II. ZEROTH-ORDER ESTIMATE OF THE GLOBAL
MINIMUM

A. Lower bound H h

If all the bubble areasAi are known but their topology is
free to vary, a minimum value min(H) for the foam energy
2-3
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FIG. 2. Simulated foams with fixed areas.~a! A typical configuration of a polydispersed foam at equilibrium. The top and bot
boundaries are fixed, the lateral boundaries periodic. The lattice is 2563256 with 589 bubbles. Shades of gray encode the numbe

neighbors each bubble has. The area dispersity isdA/Ā51.06. ~b! A regular foam with equal areas (dA/Ā50.4%) and periodic boundaries
An artificially constructed pentagon-heptagon-pentagon-heptagon cluster forms a topological quadrupole, with the rest of the ho
lattice undisturbed.~c! Two dipoles~pentagon-heptagon pairs! result in a curvature field in the hexagons around them.~d! A foam illustrating
the fixed boundary conditions: a circular obstacle in the center of a hexagonal foam induces a topological charge distribution in th
touching its boundary; all the edges are perpendicular to the solid boundary.
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~i.e., the ground state! exists@4#. However, its value, and the
corresponding pattern~s!, is an open problem. Both the fo
lowing conjectures are discussed in the Append
~1! min(H) admits a simple lower bound:

min~H !>3.71
g

2 (
i 51

N

AAi . ~5!

~2! The energy of a natural, polydisperse, random foam i
least the energy of a collection of regular hexagons with
same areas. Equivalently, min(H) admits a zeroth-order es
timateHh :

Hh;3.72
g

2 (
i 51

N

AAi . ~6!
01140
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min(H) is close to, but larger thanHh . This estimate of the
global minimumHh depends on only the area distributio
not the pattern. Thus, given an image, we can simultaneo
measureH, through the actual edge lengths, andHh , through
the areas. The ratioH/Hh is a global marker of the energ
stored in the foam, or how far the foam is from its glob
minimum at prescribed areas. We will now examine this
tio in FFF experiments and simulations.

B. Applications of H h

In FFF experiments, a metallic pin, when placed abo
the FFF, locally channels the magnetic field lines and attra
some ferrofluid. This enables us to locally perturb the ve
ces@22#. We use this magnetic manipulation to prepare fi
2-4
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EQUILIBRIUM STATES AND GROUND STATE OF TWO- . . . PHYSICAL REVIEW E 63 011402
different foams with highly distorted bubbles@Fig. 1~b!#. The
foams then spontaneously relax via an avalanche
neighbor-switching events~or topological rearrangements
often termedT1 processes!, their energies relax to a valu
slightly higher thanHh . By displacing each vertex one b
one, we force all the T1 processes we can@22# to produce
more regular bubbles: the energy decreases even closerHh
~data shown in the abscissa of Fig. 4!.

In the extended Potts model, by biasing the Monte Ca
lattice upate, we can apply a steady shear@19# to prepare a
distorted foam: a higher shear rate results in more disto
bubbles, and thus higher initial energy. We let the distor
foams relax toward equilibrium, i.e., a local energy min
mum. Figure 3 shows that, whatever their initial energy,
relaxed foams all have final energies 2% aboveHh . Initially
more distorted foams seem to reach a final energy close
Hh .

We now write the energy of the foam asHh plus three
corrections:

H5Hh1Ha1Ht1Hb , ~7!

where the subscripts stand, respectively, for hexagons,
disorder, topological defects, and boundaries. For simplic
we want to treat these corrections separately, as perturba
around the ground stateHh . This applies to weakly disor
dered foams with small area and topology variations.

III. AREA DISORDER

A. Minimization of area mismatch

The edges of a regular hexagon of areaA have lengthL
53.72AA/6 @24#. If two bubbles of different areasAi.Aj
share a common edge, its lengthl i j obviously cannot be si-
multaneously equal to bothLi andL j . There is thus an en
ergy cost associated with the area mismatch,e5(Ai
2Aj )/(Ai1Aj ), which vanishes only fore50. For small

FIG. 3. Relaxed energy of a random foam@Fig. 2~a!#. The final
rescaled equilibrium energiesH f /Hh after long relaxations (106

Monte Carlo steps MCS! are plotted against the initial energ
Hi /Hh . Note the difference in horizontal and vertical scales.
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area mismatche!1, and for bubbles far from the foam
boundaries, each edge contribution toHa is quadratic ine,
i.e., proportional to;ge2 ~the strain energy@25#!.

If the area disorder is small enough, the foam reduces
energy when the topological disorder is also small@26#.
When each bubble is surrounded by neighbors of nearly
same area and reaches a nearly regular shape, i.e.,
bubbles sort according to their sizes, the energy minimum
reached. Most bubbles are hexagons and form a slightly
torted honeycomb lattice.Ha then corresponds to the stra
energy in growing a crystal with increasing lattice size@25#.
For a foam with free boundaries and no external force fie
we expect the bubbles to sort according to their sizes; and
smaller ones inward, the larger ones outward, as in crys
@25#.

This is exactly what we observe in ‘‘annealed’’ FFF’
We tilt the Plexiglas plates from the horizontal plane to
angle of 0.1 °, inducing a low effective gravity field. Larg
bubbles drift upward, small bubbles downward, resulting
vertical sorting according to size. We can achieve the sa
result with a magnetic gradient@27#. We then bring the plates
back to horizontal, and the bubbles slowly drift and set
This procedure allows the bubbles to rearrange and exp
the energy space to find a lower energy configuration. T
final stable pattern@Fig. 1~a!# displays round bubbles an
radial sorting according to size, larger bubbles surround
smaller ones. Coming closer to the ground state would
quire individual bubble manipulations. We expect that t
same size sorting should occur in 3D foams as well.

B. Optimal edge length

The actual value ofl i j results from a minimization ove
the whole foam including the boundary conditions, which

FIG. 4. Relaxation of FFF’s: Standard deviationd( l i j /Li j ) as a
function of rescaled energyH/Hh . The five different symbols
~circles, triangles, squares, diamonds, and pentagons! correspond to
five relaxation experiments similar to the process shown in F
1~b!. Highly distorted foams~initial foams in open symbols! relax
through avalanches of T1 processes~partially relaxed foams in gray
symbols!, and magnetic manipulations~completely relaxed foams
in closed symbols!.
2-5
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impossible to calculate analytically for largeN. However, a
‘‘reference’’ length is useful. For bubbles far from the foa
boundaries and for a small area mismatche5(Ai2Aj )/(Ai
1Aj )!1, we will assume thatAi andAj alone determine an
optimal edge length Li j , and that, when the foam is in it
ground state,l i j is close toLi j .

Statistically, in an equilibrium state~not the ground state!
we expect that on averagel i j is close toLi j , i.e., ^ l i j /Li j & is
close to 1, wherê & denotes averaging over the whole foa
However, individual l i j could differ from the reference
length Li j , namely, the varianced( l i j /Li j ) is not zero~for
3D foams, we might define similarly a characteristic s
scale for faces and edges; the variance may be very la!.
Moreover, if under an extensional stress an incompress
foam is compressed in one direction and extended in
perpendicular direction, the edges parallel to the extens
tend to be larger than theirLi j , while the edges parallel to

FIG. 5. Relaxation of simulated foams.~a! Ratio l i j /Li j between
each edge’s actual and reference lengths. Histograms are show
the same foam before~1 MCS!, during~2000 MCS!, and at the end
~7000 MCS! of the relaxation.~b! Average^ l i j /Li j & ~circles, left
ordinate! and standard deviationd( l i j /Li j ) ~stars, right ordinate!
during relaxation, plotted against the rescaled energyH/Hh .
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the compression tend to be smaller than theirLi j . Thus the
averagê l i j /Li j & and the varianced( l i j /Li j ) intrinsically de-
fine a foam’s strain@28,29#.

To estimateLi j , if we stay close to a honeycomb lattic
we require thatLi j depends onAi andAj only, and is sym-
metric in Ai ,Aj . Li j likely lies betweenLi and L j and, in
order to locally minimize the perimeter under the area c
straints,Li j should be smaller than (Li1L j )/2. The geo-
metrical average is one of the most natural candidates:

Li j [ALiL j5
3.72

6
~AiAj !

1/4, ~8!

which we can test by measuring the distribution ofl i j /Li j in
both FFF’s and simulated foams.

C. Testing optimal edge length

We can measure bothHh andLi j directly on a foam im-
age simply by measuring all bubble areas@24#. In a distorted
FFF @Fig. 1~b!#, the edge lengths, bubble elongation, a
bubble topologies all vary widely. Figure 4 presents the st
dard deviation from the mean,d( l i j /Li j ) as a function of the
rescaled energyH/Hh , for foam relaxations shown in Fig
1~b!. The abscissa and ordinate, reflectingglobal and local
equilibration, show the same trend.

In simulated foams, we computedl i j /Li j for a foam dur-
ing a relaxation from a distorted high energy state: the low
the energy, the narrower the histograms ofl i j /Li j @Fig. 5~a!#.
The mean valuêl i j /Li j & decreases toward 1, and so does
standard deviationd( l i j /Li j ), as the foam equilibrates@Fig.
5~b!#. At equilibrium,Li j is statistically a good reference fo
l i j . However, locally,l i j differs from Li j . The standard de-
viation d( l i j /Li j ) reflects this local deviation, and thus th
distance to the ground state@Fig. 5~b!#.

We tested that the mean and the standard deviation
l i j /Li j are lower for equilibrated foams~Fig. 6! than for

for

FIG. 6. Different equilibrated foams. Each foam is simulat
with periodic boundaries. They have the same topology, but dif
ent area polydispersity and hence different energy ratiosH/Hh .
Average^ l i j /Li j &;1 ~circles, left ordinate! and standard deviation
d( l i j /Li j )!1 ~stars, right ordinate! indicate that eachl i j is close to
Li j .
2-6
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EQUILIBRIUM STATES AND GROUND STATE OF TWO- . . . PHYSICAL REVIEW E 63 011402
relaxing foams~Fig. 5!. By coarsening a foam from a hon
eycomb structure, we gradually increase the area diso
while keeping the topology the same, i.e., in the early st
of coarsening. The area polydispersity affectsH/Hh ~sinceH
is roughly the same for all foams@30# and Hh decreases
when area polydispersity increases!, but has virtually no ef-
fect on ^ l i j /Li j & nor on d( l i j /Li j ), except for a~linear! in-
crease smaller than 1%.

In the small-disorder limit, this treatment of area disord
allows us to predict the minimal energy configuration: t
sorted pattern. The optimal edge lengthLi j provides alocal
reference of how far the foam is from its equilibrium an
thus opens the possibility of defining local strain in foam
We now consider the energy cost due to the topological
order. Again, we consider only the weak disorder limit.

IV. TOPOLOGICAL DISORDER AND ELECTROSTATIC
ANALOGY

The ‘‘topological charge’’ quantifies the deviation from
hexagonal lattice: ann-sided bubble has a chargeq}(6
2n). Charge is additive: the charge of a collection
bubbles is the sum of their individual charges@31#. A foam
with periodic boundary conditions has zero total charge
hence an average of six sides per bubble@32#.

The proportionality constant in the definition ofq is arbi-
trary and cannot affect the physics. The literature empl
both 61. For the convenience of the analogy with curvatu
as well as the electrostatic analogy below, we require
@33#:

q[~62n!
p

3
52p2

np

3
. ~9!

A. Geometrical Gauss-Bonnet theorem

Consider thei th bubble of a foam, and circle once cou
terclockwise around it. The tangent vectort̂ along the bubble
edge, which travels around the bubble once counterclo
wise, rotates by 2p. Each sidei j is an arc of lengthl i j and
of curvaturek i j , and thus contributesk i j l i j to this rotation,
while each vertex rotates the tangent vectort̂ by p/3. The
Gauss-Bonnet theorem links the average curvature o
bubble to its number of sides@34#:

(
j

k i j l i j 5~62ni !p/35qi , ~10!

displaying how the topology constrains the curvature: fi
sided bubbles are convex and seven-sided concave.
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We now consider a contourC that follows only bubble
edges and encloses a few bubbles. Aste, Boose´, and Rivier
@31# define the number of vertices that originate an outw
~inward! pointing edge asv1 (v2) ~Fig. 7!; e.g.,v150 if C
is the boundary of the total foam,v250 if C encloses a
single bubble. Thetopological Gauss-Bonnet theorem@31#
states thatC encloses a total topological chargeQ:

Q~C!5 (
kPC

qk5~62v11v2!
p

3
, ~11!

wherek labels the bubbles enclosed byC, andQ(C) is their
total charge.

Combining Eqs.~10! and~11!, we can now write thegeo-
metrical Gauss-Bonnet theorem for a closed contourC that
follows the bubble edgesi j :

(
C

k i j l i j 5Q~C!5 (
kPC

qk . ~12!

FIG. 7. A schematic of a 2D foam. The black contourC follows
bubble edges and encloses a chargeQ (Q5p/3 due to the penta-
gon!. Vertices with squares point inward (v255) and vertices with
circular disks point outward (v1510). The dashed contourC

crosses bubble edges transversely. Along the contours tangentt̂ and

normal n̂ vectors~arrows! are defined by the right-hand rule.
TABLE I. Proposed analogy between foams and electrostatics in two dimensions.

Potential Field Charge

2D electrostatics potentialV electric field2¹W V electric chargee

2D foams pressureP curvature}2¹W P topological charge (62n)p/3
2-7
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This theorem establishes the relation between a foam’s
pology ~charges! and geometry~curvature!. We now link
them with the energy through an analogy to electrostatic

B. Electrostatic analogy

Sincek is the spatial gradient of the pressure@Laplace’s
law, Eq. ~3!#, we can assimilate the pressure to an elec
static potential and the topological charge to an electrost
charge. In this analogy~Table I!, each bubble represents
conducting platelet bearing a chargeq5(62n)p/3 distrib-
uted along its edges, which is uniform at equilibrium beca
the charge density is proportional to the the curvature. T
edges are a thin layer of insulating material of thickness p
portional to fluid fractionf, which bear a large gradient o
pressure~almost a discontinuity!. Since we are not intereste
in the actual pressure within these thin edges, we choos
interpolate the pressure in such a way thatDP50 within
edges, and introduce the notationEW [2¹W P:

EW 5edkn̂ ~edges!,
~13!

EW 50 ~bubbles!,

whereed5fL/g is the edge’s dielectric constant,k its cur-
vature, andn̂ its outward normal.

This analogy holds if the fluid fractionf is small enough
that we can interpolateP within the Plateau borders. Al
physical quantities such asP, k, or the energy defined below
have a finite limit whenf→0: only notional quantities such
as e r or EW diverge. If the unit vectorsn̂, t̂ are the normal
and the tangent toC, respectively, as drawn in Fig. 7, Eq
~4! and ~12! become

R EW •n̂dl5
Q

ed
,

~14!

R EW • t̂ dl50.

These relations hold forany contour C~not necessarily par
allel or perpendicular to edges! in the f!1 limit.

Equations~14! make the analogy to electrostatics obviou
Although both equations~14! look similar, they are physi-
cally different, describing, respectively, an outward fl
throughC ~which, in 2D, is a line integral instead of a su
face integral! and a circulation alongC. Generalization to 3D
cannot be exact, since the pressure and topology corre
with mean and Gaussian curvatures, respectively, whic
general are independent quantities. However, numerical@35#
and experimental@36,37# observations of a 3D growth law
suggest a correlation between the mean and Gaussian c
tures, which means that an approximate analogy may hol
3D.

C. Pressure field created by a topological charge

A positive q corresponds to a local high pressure. In tu
the pressure gradient correlates with the bubbles’ conca
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For illustration, we consider a foam with all bubbles havi
the same areaA, as in Fig. 7. Take one single ‘‘defect’
bubble with a topological chargeq5(62n)p/3 as a germ
bubble ~dislocation!, for instance, a regular pentagon. Co
struct around it a shell structure made of hexagons o
shell 0 is the germ bubble, bubbles of shells are neighbors of
bubbles of shells21. On Fig. 7, contourC encloses the first
shell of bubbles. Since the pentagon is the single topolog
charge in this schematic foam, the hexagons surrounding
pentagon all have the same pressure. More generally
bubbles of the same shell have the same pressure, nam
the pressure field is radial. All radial edges are straight, wh
the nonradial edges have a curvature, which we can calcu
as follows.

Around the contourC that encloses the shells, the num-
bers of vertices pointing inward,v2, and outward,v1, are
equal to the numbersNs andNs11 of bubbles in shellss and
s11, respectively. Since the total charge withinC is due
only to the central topological defect,q5p/3, the Gauss-
Bonnet theorem yields a recursive relation forNs @31#:

Ns5Ns211n5sn. ~15!

Thus the number of bubble edges thatC runs along is equa
to v21v15(2s11)n, their lengths all close to that of a
regular hexagon,L53.72AA/6. All these edges have th
same curvaturek(s)5@P(s)2P(s21)#/g determined by
the pressure difference between the shells. Thus Eq.~12!
yields approximately

~2s21!nLk~s!'q,
~16!

P~s!2P~s21!5gk~s!'
gq

~2s21!nL
.

When the foam is sufficiently large,s@1, the asymptotic
limits of both k andP are easily determined:

k~s!}
q

Ls
,

~17!

P5g(
s

k~s!}2
gq

L
ln s1P0 .

HereP0 is a constant, the pressurePb at the foam’s bound-
ary, andP grows logarithmically with the foam size as
characteristic of 2D electrostatics. Note that the pressure
pends on the topological distances rather than actual Euclid
ean distance.

D. Topological energy cost

In a honeycomb, when a topological defect induces a c
vature in the neighboring edges, the total foam perime
increases. To estimate this increase, consider two vert
separated by a distancea. An arc with curvaturek connect-
ing them has a lengthl 52a/k, wherea5arcsin(ak/2) is
half of the subtended angle. The difference betweena and l
is the length increase due to the curvature:
2-8
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l 2a5 l S k2l 2

24
1O~k4l 4! D . ~18!

As expected,l 2a is positive and quadratic ink. By sum-
ming over all edges of the foam, and keeping only the le
ing order whenk l !1, we obtain the increase in energy d
to curvature:

Ht'g(
i , j

l i j 3
k i j

2 l i j
2

24
. ~19!

For instance, around the single topological charge,k(s)
decreases asq/s @Eq. ~17!#. The summation over all curve
edges yields the energy cost due to this single topolog
defect:

Ht'g(
s

~2s21!nL3
q2

24~2s21!2n2

5
gLq2

24n (
s

1

2s21
. ~20!

It grows logarithmically with the size of the foam, as e
pected in analogy with the self-energy of a 2D electrosta
charge. For a large foam, a single topological charge cost
much energy that it never occurs in real foams.

E. Several topological charges

Consider two chargesq,q8 separated by a~topological!
distances@L; the interaction energy varies as

Ht;2qq8gL lnS s

L D . ~21!

It decreases when charges of like sign separate or charg
unlike sign aggregate. For instance, in Fig. 1~a!, the heptagon
~indicated by a number 7! has two pentagonal neighbor
This ‘‘effective interaction’’ of topological origin, which
previous work has assumed or derived empirically@14#, has
important consequences. For instance, this interaction
plains the origin of the correlations between bubbles: the s
number distribution and the Aboav-Weaire law@38#.

We can extend our electrostatics vocabulary. Two op
site charges2q1q @e.g., a pentagon-heptagon pair, F
2~b!# a distanced;L apart constitute a dipole of momen
pW 5qdW , which deforms neighboring bubbles and induc
curved edges in the hexagons around it. At a distances@d
away from this dipole, the pressure varies as 1/s and the
curvature as 1/s2, similar to the dipolar potential in 2D. A
dipole can pair with another dipole@Fig. 2~b!# to form a
topological quadrupole@Fig. 2~c!#, which affects the honey
comb lattice over a much shorter range, the pressure var
as 1/s2 and the curvature as 1/s3. Note that a T1 proces
conserves not only the total charge but also the total dip
moment, altering only the foam’s quadrupolar moment: it
a current of dipoles.

This description remains valid even for many charges
long as the curvature fields they induce are small and ca
01140
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added by linear superposition. The pressure fields of mult
charges are added linearly too. However, the present ca
lations assume equal areas; they become more difficult w
the area disorder couples with the topological disord
Physically, Ht is minimal when the foam is as neutra
~charge-free! as possible, with the lowest concentration
isolated charges or dipoles compatible with its other to
logical constraints, such as boundary conditions.

V. BOUNDARY CONDITIONS

The possible boundary conditions for foam are free if t
foam is surrounded by a fluid medium, Fig. 1~a!; periodic,
Fig. 2~b!; fixed if it touches a solid box, Fig. 2~d!; or some
combination of these three, Fig. 2~a!. As already mentioned
we use the word ‘‘boundary’’ strictly as the external limit o
a foam, while ‘‘edge’’ is the thin fluid line between two
bubbles.

A. Total charge of a foam

Periodic boundary conditions guarantee that the to
chargeQ50 @32#. For all other boundary conditions, we ca
apply the topological Gauss-Bonnet theorem@31# to the
boundary of the foam: the number of vertices pointing o
ward isv150 and the number of vertices pointing inward
v25Nb @39#. The total charge of a foam is thenQ5(Nb
16)p/3. This is checked in Fig. 1~a! by visual inspection:
there areNb519 bubbles at the free boundary and a to
topological chargeQ525p/3526.2. Moreover, for this
foam ( ik0i l 0i526.563.8, in good agreement with Eq.~12!
despite a rather large imprecision in our curvature meas
ments.

Introducing a modified definitionq̃ for charges at the
boundary is more convenient~see below!:

q̃5~62n!
p

3
[q ~bulk!, ~22!

q̃5~52n!
p

3
~boundary!. ~23!

With this new definition, the total charge of a foam becom
simply Q̃5( i q̃i52p.

B. Topology uniquely determines pressure and curvature

For a free foam, the outer fluid fixes the pressures at
foam boundary. A fixed boundary, on the other hand,
quires that the gradient2EW of P ~perpendicular to each
bubble edge, itself perpendicular to the boundary@40,41#! is
parallel to the boundary. Thus, in these two cases, the to
logical charges determine the pressure in the foam as a
richlet or a Neumann problem, respectively. Therefore,
pressure field should probably beuniquefor fixed topology.

The pressures and areas in turn fix the energy. We il
trate this for a foam with free boundaries, through the re
tion derived from the Laplace law which expresses
foam’s mechanical equilibrium@42#:
2-9
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H52(
i 51

N

PiAi22Pb(
i 51

N

Ai , ~24!

where Pb is the pressure of the outer fluid at the foam
boundary. The energy reaches its minimum when the lar
bubbles have as low a pressure as possible. Equation~24!
can be generalized toD dimensions,H being now the hyper-
surface energy, andA the hypervolume:

H5
D

D21 (
i 51

N

~Pi2Pb!Ai . ~25!

C. Fixed boundaries: Topological constraints

As mentioned above, for fixed boundary conditions@Fig.
2~d!# bubble edges are perpendicular to the boundaries@40#.
The Gauss-Bonnet theorem implies that the integralk i j l i j of
edge curvatures, plus thep/3 turn at each of then22 verti-
ces, plus twop/2 turns at the boundary, plus the curvatu
k0i of the boundary itself, add to 2p. This boundary Gauss-
Bonnet theoremis

(
j 51

N

k i j l i j 1~ni22!
p

3
12

p

2
1k0i l 0i52p. ~26!

To emphasize the physical meaning ofq̃, we rewrite it as

(
j 51

N

k i j l i j 5q̃i1k0i l 0i . ~27!

At a straight boundaryk0i50; a pentagonq̃i50 can have
all straight edges, while a hexagonq̃i5” 0 cannot, henceq̃ is
more relevant thanq. A curved boundary has the same effe
as a small topological chargek0i l 0iÞ0. By the Gauss-
Bonnet theorem along the boundary, the solid box impos
total charge

Q̃5(
i

k0i l 0i52p. ~28!

FIG. 8. Difference between an infinite foam and a finite foa
with free boundary conditions.~a! Part of an infinite hexagona
foam enclosed by a contour.~b! Schematic picture of the sam
bubble cluster with a free boundary, the straight edges at the bo
ary relaxed to circular arcs.
01140
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The shape of the solid box determines the distribution of
total chargeQ̃52p among the bubbles touching the boun
ary: thek0i l 0i ’s act as a line distribution of charges along t
boundary. If the solid box has all corner angles a multiple
p/3, we can have theq̃’s be multiples ofp/3, compatible
with all bubble edges being straight. In general, however,
solid box imposesq̃’s that are not multiples ofp/3, resulting
in curved bubble edges. The same applies to a conc
boundary, for instance, an obstacle placed in the middle
the foam, which introduces a total chargeQ̃522p, as can
be visually checked in Fig. 2~d!.

D. Free boundary: Contribution to the energy

The energy contribution from the boundary condition
Hb , is a function of the number of bubbles at the bounda
Nb . Take an infinite foam, and consider in it a contourC
enclosing a finite number of bubblesN. The perimeter of this
contour isLC , contributingLC /2 to H. If we take the part of
the foam enclosed byC and give it a free boundary, th
straight boundary edges relax and reach a new perimeterLb ,
as Fig. 8 shows. The new perimeter is slightly smaller th
LC , but Eq.~1! now counts it twice, contributinggLb to H.
The cost due to the free boundary is thus the difference
tween the two terms:

Hb5gS Lb2
LC

2 D . ~29!

Hb is always positive and grows likeNb : for a givenN, it
reaches its minimum forNb;AN, i.e., for a rather round
boundary.Hb is of ordergLC /2 and is difficult to evaluate in
general, since the shape relaxation is nontrivial.

We study a special case for insight: an ‘‘isobaric’’ foa
in which all bubbles have~exactly or approximately! the
same pressurePi5P, with a large number of bubblesN and
free boundaries. In this case all internal edges are stra
and all boundary edges have the same curvaturekb5(P
2Pb)/g. Equation~24! gives the total foam energy

H52~P2Pb!(
i 51

N

Ai52gkbNĀ. ~30!

H has the same value as if all bubbles had the areaAi5Ā
@30#: for N large enough thatN@Nb , boundary effects are

much smaller thanH, which varies asH→3.72N(g/2)AĀ;
hence in the large-N limit

kb'
3.72

4AĀ
1OS Nb

N
D . ~31!

Thuskb is about half the curvatureAp/A of a single round
bubble. The FFF in Fig. 1~a! obeys this relation with a 15%
error becausekb is not uniform. This result generalizes t
any dimensionD, with L̄ and Ā the average hyperarea an
hypervolume

d-
2-10
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kb5
~D21!L̄

2DĀ
F11OS Nb

N D G , ~32!

which determines the difference betweenLC and Lb , the
perimeters of the contour in the foam and the free bound

The energy cost due to the boundary,Hb , can be better
estimated for a 2D honeycomb. In a honeycomb,C contains
v11v252Nb16 straight edges of lengthL53.72AA/6;
henceLC5(2Nb16)L. After the boundary is created, th
topological charge of the finite foam isQ5(Nb16)p/3, and
Eq. ~12! relatesLb to kb :

kbLb5
p

3
~Nb16!. ~33!

Equations~29!, ~30!, and~33! are now closed; we can calcu
late Hb , k, andLb explicitly. They are particularly simple
in the limit of a large foamN@Nb@1, where, up toO(1/Nb)
andO(Nb /N) terms,

Hb5gS p

3

Nb

kb
2NbL D

'gNbLS 2
p

3.46
21D . ~34!

The factor 2 reflects the creation of a boundary; the ra
betweenp and (3.72)2/452A353.46 reflects the relaxation
of regular hexagons into circular arcs.

VI. SUMMARY

Foam structures are the result of surface energy min
zation. Most foam studies have focused on a few con
quences of the energy minimization and ignored the fo
energy itself. We reconsider the equilibrium energy of 2
foams with given bubble areas and draw from it the gene
understanding of foam structure as natural results of ene
minimization.

The pressureP, edge curvaturek, and topological charge
q5(62n)p/3 are good variables to characterize a foa
They present a profound analogy with 2D electrostatic
tential, field, and charge, respectively, through the geome
cal Gauss-Bonnet theorem@Eq. ~12!#. The analogy relates
the curvature, topology, and energy of a foam; indicates
the topology determines a foam’s energy; and explains
origin of topological and geometrical correlations in foam

We have defined reference valuesHh andL for the foam’s
total energyH and edge lengthl; both can be directly mea
sured on an image. The zeroth-order estimate of the gro
energyHh is a function of the area distribution only, inde
pendent of the topology. The estimate of the edge lengt
the ground state,L, is a function only of the areas of tw
bubbles sharing the edge. The ratiosH/Hh and l /L provide
global and local markers, respectively, of how far a foam
from its ground state, opening the way toward an intrin
definition of strain in a foam@29#.

The present analysis also provides insight into the cla
minimum perimeter problem generalized to nontrivial situ
01140
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tions: large number of bubbles, arbitrary area distributio
and various boundary conditions. It explains physically t
different contributions to a foam’s energy~area mismatch,
topology, and boundaries! and predicts the foam configura
tions corresponding to their ground state~hexagons sort ac
cording to their size; topological charges of the same s
tend to separate and opposite signs tend to aggregate!.

This analysis applies to any perimeter-minimizing ma
rial, where the energy is an increasing function of the to
bubble perimeter. The analysis does not depend on the c
acteristic size and energy scales. It is also valid for foam
which bubble areas vary slowly. Deriving approximate r
sults for 3D seems possible.
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APPENDIX: CONJECTURES REGARDING THE MINIMAL
PERIMETER PROBLEM

We consider a foam with all bubbles areasAi given. Their
topology is free to vary~each bubble remains connected!.
Their shape is free to vary too; each bubble has an elonga
defined as

ei5
Li

AAi

. ~A1!

The problem is to find the minimum value min(H) the foam
energy could reach, i.e., to find

TABLE II. Elongation e(n)5L/AA of regular bubbles withn
curved edges meeting at 2p/3 angles.

n e(n)

2 3.779410
3 3.742190
4 3.730802
5 3.725462
6 3.7224205 23/231/4

7 3.720471
8 3.719130
9 3.718151
10 3.717409
20 3.714489
50 3.713052
` 3.7122195 2(p)3/2/3
2-11
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minS (
i

Li D 5minS (
i

eiAAi D . ~A2!

While this problem is still open, we make a few conjectur
and comments

a. Elongation of a regular bubble.Consider a bubble with
n equal sides. They meet at 2p/3 angles. Thus, due to th
Gauss-Bonnet theorem, each edge turns an angle~i.e., sub-
tends an angle! 2a, wherea5p(1/n21/6). Some simple
algebra shows that the bubble elongatione(n) is

1

e~n!2
5

1

4na2 S a2
sin~a!sin~p/6!

sin~p/n! D . ~A3!

b. The function e(n) is almost constant.Table II shows a
few values ofe(n). The function diverges whenn→1, since
no arc of a circle can self-intersect at a 2p/3 angle. There is
no limit when n→0: a circle is qualitatively different from
all other bubbles. The function is regular at alln.1, includ-
ing atn52 and 6; although it decreases withn, it is surpris-
ingly close to a constant:e(2) is only 2% abovee(`).

c. Lower bound for the total perimeter.In a foam, each
bubble tends to be as round as possible, subject to the
straints of its neighbors. Since all regular bubbles have
.e(`)53.71, we conjecture a lower bound not only for t
elongation averaged over the foam,

ē.e~`!'3.71, ~A4!

but also for the total perimeter,
ls

2

h.

n,

.

01140
s

n-

(
i

Li.3.71(
i

AAi ,

~A5!
^Li&.3.71̂ AAi&.

d. Comments on this lower bound.We are not aware of any
foam pattern violating this lower bound. Morgan@43# finds
that an alternate tiling of eight-sided bubbles and 0.157 tim
smaller four-sided bubbles@take Fig. 2~a! of Ref. @2# and let
curvatures relax# has ē53.722 418 and̂ Pi&53.719̂AAi&,
so Eqs.~A4! and ~A5! still hold.

e. Estimate for a natural foam.In natural foams, bubbles
with five, six, and seven sides dominate@15#. As a zeroth-
order estimate, we conjecture that

ē'e~6!'3.72, ~A6!

and the minimum value of̂ Pi&/^AAi& is closer toe(6)
'3.72 than toe(`)'3.71:

Hh'3.72
g

2 (
i

AAi , ~A7!

where the subscripth stands for hexagons.
f. Comments on this estimate.In Morgan’s above example

@43#, bothē and^Pi&/^AAi& are lower than this value. On th
other hand, when all areas are equal, the minimum~honey-
comb lattice@1#! has of courseē5( iLi /( iAAi5e(6). For
convex bubbles~i.e., with straight edges!, it has been dem-
onstrated thatē>e(6) @44#. Finally, note that it is compat-
ible with the fact that for convex hexagons~i.e., with straight
edges! with 2p/3 angles,( iLi is a function of( iAi only
@30#.
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