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Near the minimum of the 3He melting curve, the dynamics of the liquid-solid 
interface is limited by surface dissipation instead of bulk diffusion of latent 
heat. Three dissipative coeffcients characterize the intrinsic properties of  the 
interface: the mobility k, the Kapitza resistance RK, and the latent heat sharing 
coefficient k. These parameters are studied at T = 0.32 kelvins, and at 29.3 bar, 
and the theoretical predictions are compared to recent measurements. 

1. INTRODUCTION 

Usually crystal growth is limited by bulk diffusion of latent heat or 
impurities. In contrast, helium-3 or helium-4 can be free of impurities, and 
the solid-liquid latent heat L may vanish. Even when nonzero, the latent 
heat L is evacuated very quickly due to the good thermal conductivities 
present: in the solid for both 3He and 4He and in the superfluid for 4He 
(or for 3He at lower temperatures). Crystal growth is then limited only by 
surface dissipation, which can be experimentally studied. 

The elementary excitations in each phase determine both the surface 
dissipation I and the transport properties. We discuss the kinetic coefficients 
around the minimum of the 3He melting curve (Tm=0.32K and P =  
29.3 bar) before comparing them to experimental results. We focus on the 
Kapitza resistance RK, for which we have developed a detailed calculation. 

In the second section we present the notation used to describe the 
interface. 2 In Sect. 3, we interpret recent experiments 3 and deduce a measure- 
ment of the Kapitza resistance at Trn. RK is measured by its effect on growth 
dynamics and not as the usual ratio of a temperature jump by a heat flux. 
We present our predictions at low temperature in Sect. 4 and compare them 
with the experiments in Sect. 5. The details of our calculations will be found 
in the appendices. 
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2. D E S C R I P T I O N  OF A M O V I N G  INT E RFACE  

When a pure crystal is grown from its melt, the liquid-solid interface 
moving with a velocity v is crossed by two coupled currents: a flux mass 
J = psV, and an energy flux Je. They are driven by the discontinuities of 
chemical potential A/Z = /ZL- /zs  and temperature" A T  = T L - T s  between 
both phases. When rough, the interface responds linearly to small departures 
from the thermodynamical  equilibrium; the fluxes are linked to the "forces" 
by linear Onsager relations 2"4 

C ] \ A T / T 2 , ]  (1) 

Here Jo is the heat flux Je - / z  J;  in each phase it is the sum of  a conduction 
current and a convection term TSJ 

JQ = JE - /ZJ  = JQL + TSLJ=Jos + TSsJ (2) 

Expression (1) takes an equivalent but more useful form 

A T =  RK(Jo - A  J)  (3) 

J = psk(A/z + A A r / T )  (4) 

The coefficient k is the isothermal mobility of the interface: when AT-= 0, 
we have v = kA/z. The thermal Kapitza resistance RK is defined in the static 
case (v = 0) by the usual relation AT = RKJo. The crossed term A describes 
the sharing of the latent heat creation between both phases; for instance, 
in the isothermal case where AT = 0 and Jo = A J, the conduction currents 
on each side are JQs = J(A - TSs) and Jot  = J(A - TSL): A determines separ- 
ately -los and JoL, while their difference - los -Jo t  = JL is fixed by the 
production rate of  the latent heat. 

The motion of the interface is often started by a pressure variation. It 
is then convenient to distinguish in the " force"  A/z a driving mechanical 
term A / Z  M and a thermal brake A].~ T. The Gibbs-Duhem relation yields 

A/Z=A/ZM+A/ZT=(  3PL 8Ps~- (SL3TL-SsSTs )  (5) 
\ PL PS] 

where 3P = P - P~q(T) and 3T are small fluctuations around the equilibrium 
values for a flat interface; PL and Ps are the densities; A/z, SL and Ss are 
referred to the unit of  mass. In the experiments discussed hereafter, A/ZT 
cannot be measured; in practice we eliminate the thermal terms and intro- 
duce an effective mobility of  the interface by 

v = kafA/zM (6) 



The Growth Kinetics of  aHe Crystals 115 

where keer includes all information concerning heat creation and evacuation. 
In the linear regime, and as long as the phonons are in hydrodynamical  
regime, 4 heat conduction in each phase can be characterized by a bulk 
thermal impedance.  I f  the fluxes are oriented positively from liquid to solid, 
the impedances ~" are defined by 

8Ts = +~sJos ; 8TL = --~LJoL (7) 
The thermal circuit has then a simple electrical equivalent: the bulk imped- 
ances ~z, ~s are shunted by the resistance RK of the interface. The latent 
heat creation injects a flux J ( T S L - A )  on the liquid side and " J ( T S s - A )  
in the solid (Fig. 1). The conduction current crossing the interface is 
(STL--8Ts) /RK,  and we have 

J( TSL - A) = ~TL+ 8TL -- ~Ts (8a) 
~L RK 

J(A - TSs) = 8Ts+ 8Ts - 8TL (8b) 
~s R r  

or equivalently 

~sL + RK ( TSL - X ) 
8TL = J~L (9a) 

Interface 
I 

I I Solid Liquid 
I 

I 

I 
JQ- kl~ ~- 

J (TSL - )~i , A • A (TSs - k) 

RK 

JQL ; ~S ~ ' l  JQS 

Fig. 1. The electrical analogy of the thermal circuit. The latent heat creation is shared between 
the two phases and debits in the bulk thermal impedances ~'L, ~'s shunted by R K. The currents 
are oriented positively from the liquid towards the solid. 
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~sL+ RK (A - TSs) 8Ts = J~s (9b) 
RK + ~L + ~S 

Equation (4), after elimination of  8TL and 3Ts, allows us to calculate the 
effective mobility kea. It corrects the intrinsic mobility k by a combination 
of  the Onsager coefficients and bulk thermal impedances, describing the 
dissipative effects due to latent heat evacuation 

1 =--tl Ps RK~L~S ~r(rs~-x) ~ + (TSs-A)2 ~ t2q~l 
(10) 

k~a k T RK + Kt + ~S L -~s ~L RK .~ 
We see that the thermal term slows down the growth (kaf < k) whatever the 
sign of L or A/zM. 

In usual crystal-growth experiments, thermal conductivities are finite 
and RK, which decreases as T -3, is negligible compared to ~'L and ~'s. Bulk 
dissipation is then dominant. Since the second term in Eq. (10) is greater 
than 1/k, the surface dissipation is completely hidden; discontinuities of 
temperature or chemical potential across the interface are negligible com- 
pared to the bulk gradients. In 3He or 4He the thermal impedances and L 
can be made sufficiently small, and the properties of the interface itself 
become open to experiment. 

3. E X P E R I M E N T S  O N  T H E  3He LIQUID-3He SOLID INTERFACE 

3.1. Excitations in Both Phases 

The thermal excitations in 3He solid are longitudinal and transverse 
phonons as well as spin degrees of freedom, but we will see that the latter 
are frozen on the relevant time scales. There is thus no essential difference 
with the case of 4He. In contrast, 3He liquid presents a "thermal bath" of 
quasi-particles that have a much greater thermal capacity than phonons 
and rotons of  the superfluid 4He. The kinetics of  the interface, i.e., the 
mobility as well as heat transmission, is hence deeply modified (Table I). 

TABLE I 
Velocities of Excitations under 29.3 bar 

Liquid 
quasiparticles: m*/m = 5.33 at 0 K 
first sound 
longitudinal zero sound 
transverse zero sound 

Solid 
longitudinal sound 
transverse sound 

vF = 35 rn sec -1 Ref. 5 
c t = 402 m see -~ Ref. 6 
cot = 404.5 i n  s e c  - 1  Ref. 6 
Cot >- VF Ref. 7 

380 to 480 m sec -~ Ref. 8 
120 to 240 m see -~ Pet'. 8 
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In the temperature range between 2.5 mK and a small fraction of  one 
kelvin, liquid 3He is a Fermi liquid described by the Landau theory. 9-1~ It 
supports individual excitations, namely the quasiparticles with momentum 
close to the Fermi momentum pF and also collective sound excitations. At 
a frequency to smaller than the collision frequency in the liquid (tozcol~ << 1) 
we enter the hydrodynamic regime, and the liquid has the usual viscous 
behavior. A longitudinal wave propagates, while a transverse shear wave 
is overdamped. But if toT¢on >> 1 (high frequency or low temperature), the 
collective modes are "zero sound"-like. Beside the longitudinal mode, 6 there 
appears a transverse mode, 7 which means that the liquid has an "elastic" 
behavior. The longitudinal zero sound propagates at a velocity slightly 
greater than first (normal) sound; transverse zero sound travels at a velocity 
of  order the Fermi velocity VF .12"13 

3.2. The Cross Coefficient 

The Onsager cross coefficient A determines the partition of  the latent 
heat between both phases: a heat flux T S L - A  is created at the surface on 
the liquid side, and A - TSs on the solid side.* At a microscopic level, this 
heat creation is due to inelastic processes occuring when an atom sticks to 
the solid or, inversely, is emitted from the solid into the liquid. If  we ignore 
at first the acoustic modes (phonons) and the magnetic exchange in the 
solid, an atom in the solid has a well-defined enthalpy es. When it gets into 
the liquid where it has an enthalpy e, the difference (e - es) ~ T has to be 
provided by the surrounding thermal excitations. The only remaining 
degrees of  freedom are those of  quasiparticles in the liquid. The elementary 
process appears then as an interaction mechanism where an atom from the 
liquid sticks to the solid while another one removes the excess of  enthalpy. 
As a result, the melting enthalpy is released on the liquid side, which implies 
A = T S ,  as has been suggested by Puech, Bonfait, and Castaing (PBC). 14 

Of  course, the solid does have internal degrees of  freedom that could 
contribute to inelastic processes and energy conservation upon sticking. 
The spin degrees of  freedom control the magnetic entropy k/~ log 2, but the 
corresponding exchange energy is far too small to provide an efficient 
evacuation mechanism, typically 1.25 mK for a pair of spins, compared to 
thermal energies -0 .3  K. The solid phonons are not efficient either in view 
of  their long wavelengths: they are very weakly coupled to the localized 
sticking process, in contrast to liquid quasiparticles that can be localized 
into wave packets of size - k~ -~ . Besides, phonons have a small specific heat 
compared to that of  quasiparticles. Such a qualitative argument can be 

*This distinction between both sides of the interface would not make sense if the Kapitza 
resistance were negligible compared to the bulk thermal impedances. 
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made more precise by calculating the acoustic energy radiated in the solid 
when an atom sticks to (or bounces on) the surface. This calculation is 
carried out in Appendix A, yielding a radiated energy 

E _1 p ~ ( T ' ~  3 
rad-- 3 ~ m  \~DD ] (11) 

where ®o is the Debye temperature of the solid. The factor T 3 is a statement 
of the mismatch mentioned above. Such a mechanism cannot dispose of 
an inelastic energy -T .  

3.3. Experimental Measurement of k and R~ 

During recent experiments reported elsewhere, 3 very pure 3He crystals 
have been grown from their melt in an optical cryostat. A m0nocrystal is 
observed during its relaxation towards thermodynamic equilibrium. Its 
shape evolves by local melting and recrystallization under the effect of 
gravity (since the solid is slightly more dense than the liquid) and the surface 
tension y. The size of each crystal is between 1 and 3 mm, and the relaxation 
takes 10 to 30 sec. The windows of the cryostat allow one to measure visually 
the speed of the interface. Moreover, the applied departure from mechanical 
equilibrium A/zM is controlled only by gravity and capillary forces; it is 
also possible to measure it visually, by determining the heights and cur- 
vatures of various points of the interface. The effective mobility k~ (Eq. 6) 
becomes directly measurable. 

Experiments are done around the minimum of the melting curve P(T); 
the latent heat L, which is proportional to dP/dT, vanishes and becomes 
negative at Tm= 0.32 K. By choosing the temperature, one can control L 
as a variable parameter. It is then possible to determine kerr as a function 
of L and to compare its behaviour with theoretical predictions (Eq. 10). 

For experiments performed close to the minimum of the 3He melting 
curve, some approximations simplify the expression for k~r. 

The liquid has a very poor thermal conductivity15:4.5 x 10 -3 W m -1 K -1, 
compared to more than 16 W m  -1 K -1 for the sol id .  14A6 The heat diffuses 
at a rate of 4.6 x 10 -s m 2 sec-l: on a time scale of 10 sec, the boundary layer 
is ~1 mm wide, i.e., about the size of the cell. The resistive (real) and 
capacitive (imaginary) parts of the thermal impedance eL are then both of 
order of 0.22 m 2 K W -1. The bulk thermal impedance of the liquid is large 
compared to the Kapitza resistance. 

In the solid, the phonon mean free path is limited by reflections on 
the surface and on the copper walls. 16 One can only define, for the distribu- 
tion of phonons present in the crystal, a global temperature Ts. The phonons 
come from the liquid, which is thermally inhomogenous; but after multiple 
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reflections their distribution becomes isotropic: Ts represents the physical 
temperature that controls the growth kinetics. It is then possible to define 
a bulk thermal impedance ~s, with a zero real (resistive) part. The capacitive 
part is due to the variation of the crystal mass, but the quantity of crystal 
remains almost constant during the experiments, so that here Im(~s) is also 
negligible. 

We obtain then [~L[ >>RK >>[~s[- Another simplification is that the 
difference ( T S s -  A) can always be neglected* in Eq. (10), which eventually 
becomes 

1 1 p s  2 1 
k ~ f f = ~ + - ~  RrL = ~ + 3  x 108Rr(T - Tin) 2 (12) 

(units: k in sec m-l ;  R/( in m2K W-I; T in K). The physical situation is 
clear (Fig. 2). The latent heat released by the growth is created on the liquid 
side, mostly in the quasiparticles bath. It eventually transfers to collective 
modes, which provide a channel to transmit it back to the solid. The limiting 
factor is the Kapitza resistance which must be crossed in order to ensure 
evacuation. In the melting area, the situation is reversed: heat crosses again 
the interface and is absorbed in the liquid. 

Experimentally, 3 the growth rate keff reaches a maximum when the 
latent heat vanishes, as expected; namely k = 0.18 + 0.04 sec m -~. The posi- 
tion of the maximum at T = Tin, with an uncertainty of 10 mK, confirms 
that I A / T S s -  I I is certainly less than 1.5 x 10 -2. The curvature of  1/keff (T) 
yields RK; the major uncertainty comes from the measured value of the 
surface tension is y = 0.060:e 0.011 erg cm -2. One finally obtains the follow- 
ing experimental value at 0.32 K: 

Rr = 1.3 + 0.3 c m  2 K W -1 [i.e., RK T3 = 0.043 ± 0.01 cm 2 K 4 W -1]  (13) 

whereas PBC 14 measured RK T3 = 0.8 cm 2 K 4 W -1. Their measurement is 
more direct, but more open to experimental complications: this large dis- 
crepancy is currently under examination (Castaing and Bossy, private 
communication). 

Here R r  is indirectly measured by its effect on the growth kinetics and 
not by any heat flux or temperature measurement. This is possible here 
because RK is not hidden by the bulk thermal impedances. If  part of the 
latent heat were released in the solid, it would be evacuated without crossing 
RK; the same effect would appear if RK were much less, or even much 

*When L is nonzero, (TSs-A)<< L: indeed, with L = 9 0 0  (T-TIn)  J k g  -1 (Ref. 17) and 
TSs ~ kBTln 2/m =615 J kg -1, we see that l1 -A/TSs[  < 6 x  10 -s  is smaller than L/TS  s = 1.5 
( T -  Tin) as soon as ] T -  Tml exceeds 0.04 inK. And when L is zero, at T =  Tin, the correction 
psRK ( TS s - A )2/T is less than  10 -4 m sec -1, i.e. negligible compared to the intrinsic mobility 
term 1/k. 
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J.L J.L 

Fig. 2. This egg-shaped 3He crystal is 2.6 mm wide. Its shape relaxes, driven by gravity and 
surface tension. Within - 3 0  sec, the top melts while the bottom grows, until the equilibrium 
meniscus is reached. The thermal circuit of Fig. 1 is much simplified in our experiments: here 
A = T S  s and I(LI >> RK >> I(sl. The latent heat is created within the liquid in the growing area, 
crosses the interface, and is evacuated through the solid. The melting area acts to absorb the 
latent heat. The temperatures are indicated on the upper part of the figure, the heat flux in 
the lower part; here 3Tt_ = R K J L .  
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greater, than both ~L and ~s. In these cases RK would play a negligible role 
in the dissipation. 

4. THEORETICAL STUDY OF RK 

We will now present a calculation of the Kapitza resistance based on 
an acoustic mismatch method, stressing the importance of transverse zero 
sound in heat transmission. 

The helium-3 solid-liquid interface is free of impurities and in a 
well-defined surface state; the acoustic impedances of both phases are 
comparable. It is impossible here to use semiclassical or fully quantum- 
mechanical treatments 19 based on perturbation developments in l)F/Csound, 
as this number is not small for the transverse sound in the liquid. We use 
the acoustic mismatch model, modified to take into account the strong 
attenuation of these transverse modes. The arguments leading to this choice 
are reviewed in detail by Swartz and Pohl. 2° 

The heat flux ggS-~L from solid to liquid is determined by the flux of 
phonons incident on the interface on the solid side and by their transmission 
rate; at thermal equilibrium it is exactly compensated by an opposite flux 
¢PL-,S coming from the liquid. The acoustic mismatch model 21-23 relies on 
the assumption that ~S~L is a function of Ts only and not of TL. Then, 
near equilibrium, with Ts = TL + A T, the resulting heat flux is 

dPs-.L(Ts) - $L-,S( TL) = A T .O$s-'L (14) 
OT 

The Kapitza resistance is determined if we know the function Os-,L(T). As 
the incident heat flux depends only on the phonon distribution in the solid, 
the problem consists in calculating the energy transmission rate for one 
phonon. 

When a phonon of the solid (longitudinal or transverse) hits the 
interface, the surface of the liquid is submitted to a pressure and velocity 
wave characterized by two parameters: its frequency oJ and its wavelength 
q in the plane of the surface (noted yz) .  Boundary conditions on the liquid 
side relate the stress tensor o- 0 to the liquid velocity v: we can define one 
acoustic impedance matrix [Z L] for each mode of incident phonon accord- 
ing to 

crxy =-[zL(o,, q)] vy 
Vrxz/ \vz/ 

(15) 
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In the solid, acoustic impedances [Z s] are defined in the same way. The 
knowledge of the acoustic impedances of both phases is enough to determine 
the transmission coefficient for phonons and to compute the Kapitza resist- 
ance (see Appendix B). 

In the solid, such a "surface acou6tic impedance" [Z s] is just the 
projection onto the surface of the usual bulk impedance. When diagonalized, 
the latter reduces to one quasilongitudinal and two quasitransverse scalars 
respectively equal to psCi, where ci are the sound velocities. The solid has 
the phonons of an usual bcc crystal. 8 We do take into account the distribution 
of phonon velocities, but we average over the anisotropy of the crystal when 
calculating the transmission. 

In the liquid, the surface impedance may in principle differ from the 
projected bulk impedance, due to distortion of the quasiparticle distribution 
near the walls, extending over a mean free path. We neglect this effect: we 
assume that the liquid response is controlled by the bulk impedance. The 
latter can be reduced to a longitudinal component Z~ and two transverse 
components which, due to the isotropy of the liquid, are equal: we call 
them Z~. Let us now focus on the impedances of the liquid. 

The longitudinal impedance Z~ is essentially due to the sound modes. 24 
Indeed, the quasiparticles are strongly coupled and the longitudinal sound 
modes are well separated from the individual Fermi excitations continuum 
(c is much greater than VF) 6,12.13 Because the density and the compressibility 
of both phases are almost equal at the minimum of the melting curve, the 
acoustic mismatch is small. The phonon-phonon coupling then ensures a 
good heat transmission 19 from solid to liquid. Within the bulk of the liquid, 
the coupling between collective and individual excitations is also good (see 
discussion section), so that the heat eventually reaches the quasiparticle 
bath where it is stored. Conversely, the direct coupling at the interface 
between photons of the solid and quasiparticles is much weaker (see above 
and Ref. 23). 

However, the longitudinal modes cannot account for all the heat 
transmission. The transverse zero-sound modes are 10 times slower. Their 
transmission rate is smaller, due to a poorer acoustic mismatch; but they 
contribute more to the phonon specific heat (which varies as 1/c 3) and 
hence to the heat flux (which varies as 1/c2). A simple estimate which 
neglects this new transmission channel 14 leads to RKT 3~ 0.2 cm 2 K 4 W-l: 
this value is five times larger than the experimental result. The transverse 
modes thus play a crucial role (Fig. 3). We need to know Zt L along the 
melting curve for thermal frequencies. 

At low temperatures (<50 mK), the thermal phonons are in the zero- 
sound regime and correctly described by Landau theory. But in contrast 
with longitudinal zero-sound, Co, is very close to vF and Z~ doesn't reduce 
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Fig. 3. The transmission rate r of phonons com- 
ing from the solid. The incident phonons are 
either: l = longitudinal, tl = transverse vibrating 
in the incidence plane, t2 = transverse vibrating 
perpendicularly to the incidence plane. Here 
~" cos 0 sin 0 is plotted vs. the incidence angle 0, 
so that the relative importance of a mode is rep- 
resented by the integral of the curve. (a) At high 
temperatures, without transverse modes in the 
liquid, the t2 mode is not transmitted at all. (b) 
At 0.32 K, with transverse modes in the liquid, 
the transmission is significantly enhanced. 

.40 

0 20 40 60 60 
INCIDENCE ANGLE fl 

.5C , , , ., , , , , 

.4C 

0 20 40 60 80 
INCIDENCE ANGLE 8 

to pLCo,. The  whole  spec t rum o f  exci ta t ions cont r ibu te  to Z ~ ,  inc lud ing  the 
c o n t i n u u m  o f  ind iv idua l  modes .  A comple te  ca lcu la t ion  should  be based  
on a l inear  response  func t ion  formal ism.  1° Exper imen ta l  measuremen t s  7 
yield a g lobal  value* o f Z t  L. One  can paramet r ize  Z ~  by defining an "effect ive 
sound  ve loc i ty  " cen accord ing  to 

Z ~  ~ pLcef~ (16) 

The ex t rapo la ted  value  at mel t ing  pressure is cen~23"4  m / s e c .  No te  that  
c~, is be low vF, express ing the cont r ibu t ion  o f  the quas ipar t ic le  con t inuum.  
I f  we use this value,  the p h o n o n  t ransmiss ion  rate is i n d e p e n d e n t  o f  T, and 

*Predictions from the Landau theory (Ref. 25) disagree with its frequency dependence. For 
a review of this problem, see for instance Ref. 12. 
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R K T  3 remains constant. Our numerical calculations yield 

RK T3 = 0.03 c m  2 K 4 W  -1 (T < 50 mK) (17) 

At higher temperatures (especially at 0.32 K) the transmission should 
be worse, since the transverse modes disappear in the first-sound regime: 
R K T  3 increases slightly with T. But a difficulty arises in the determination 
of Z, L as a function of T. This frequency and temperature range (101° Hz, 
0.3 K) is both outside the .validity domain of Landau's theory and yet 
inaccessible to direct measurements. 

At still higher temperatures, we enter the hydrodynamic regime in 
which Z~ is monitored by the liquid viscosity ~7 ~ T-2 

(PLy: .PL (18) ='no, 

'090I'100~ , I I I I l , I 1 

.08 (  - -  

.0 7( 

, . .0613 

.,a ~ . 

,.e . 050  

.0413 
I"3 

i - m  _ 

.o3c 

. 0 2 0  - -  

i .010 _ 

0 I I I I I I I I 
10 15 20 25 30 35 40 45 50 Cerr ( m.s'l ) 

Fig. 4. R K T  3 is c o m p u t e d  at  0.32 ke lv ins  as a func t ion  of  cen in  a range 5 to 50 m / s e e  (see 
text) .  Uni ts :  c~tr in  m sec -1, R K T  a in  cm 2 K 4 W - L  
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The best we can do is to interpolate between the two limits, using a 
"viscoelastic" model 26 in which 

(pL  2 1 pL 
= - 7 - +  i - -  (19) 

The real (imaginary) part  characterizes the propagat ion (attenuation) of  an 
excitation, c~fr is then a parameter  which follows from a fit to the experi- 
mental RK (see Fig. 4 and Appendix B). 

In principle, we could also replace ~7 by an effective ~e~(to), which 
would go to ~7 as to decreases: such a refinement is useless at 0.32 K as in 
practice the result does not depend much on ~%n. It seems that r /has  never 
measured exactly at the minimum of  the melting curve, but extrapolation 
of  measurements  at different temperatures 27 and pressures 28 indicates the 
same value as predictions deduced from Z~  7 or from Landau theory, 12 
namely 

,7 - 4 x 10 -5 Poise (at 0.32 K and 29.3 bar). (20) 

5. D I S C U S S I O N  AT 0 . 3 2 K  

The experimental value of  RK agrees with our prediction. RKT 3 at 
0.32 K is higher than our predictions at lower temperatures,  which corre- 
sponds to the transition range between the first- and zero-sound regimes. 
Then Fig. 4 yields the "effective transverse sound velocity" ceff at the 
minimum of  the melting curve and at thermal frequencies (10 l° Hz) 

10 m sec -1 < ce~< 20 m s e c  -1 (21) 

in good agreement with the value deduced from lower frequencies dataT: 
c~n = 15 m sec -1 at 108 Hz. 

The major  heat transmission channel across the interface is the coupling 
between sound modes in both phases. Harrison 23 reviewed the question of 
thermalization in each phases, applying Khalatnikov's  method. 21 In the 
liquid, the heat is essentially stored in the quasiparticle bath. The bulk 
thermal resistance between the phonons of  the liquid and the quasiparticles 
for a volume V is 

15 h 3 c 2 
R~L-QpV- 4,rr 2 k4 ~ T  3 (22) 

The longitudinal sound attenuation is a ~ 2 x 10 6 m -1 at the minimum of 
the melting c u r v e 6 ' 1 2 ;  i . e . ,  for a typical thickness of  I mm the resistance per  
surface A is 

RC,L_QpA ~ 2 x 10 - 4  cm 2 K W -1 (23) 
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at Tm= 0.32 K. This resistance is then negligible compared to RK. Note that 
a varies as T 2, which means that Rq, L_QpT 3 increases quickly at low 
temperatures. As for the transverse sound in the liquid, it is slower and 
much more attenuated, hence even better thermalized with the quasipar- 
tides. 

Conversely, in the solid, a similar evaluation yields the bulk resistance 
between the phonons and the spin-exchange bath 

1 = Cspin (24) 
R~s-sp t 

Here t is the relaxation time of the spins in the lattice, Cspin is the specific 
heat of  the spins. Numerically, at the minimum of  the melting curve, 
t -  1 sec29; Cspin/R - -  4.6 x 10 -5, i.e., (?spin = 1.5 x 10 -5 J K -1 cm -3 per unit 
volume. For a typical thickness of I mm and an area A, the resistance is 

Rcps-spA ~ 106 cm 2 K W -1 (25) 

This resistance is much bigger than RK : the spins are decoupled from the 
heat-transmission processes across the interface. 

6. CONCLUSION 

We presented here a coherent description of the dissipative coefficients 
that control the growth kinetics of the 3He solid-liquid interface. Predictions 
based on the study of the elementary excitations in both phases are compared 
to experimental results at 0.32 K. 

(1) The coupling between heat and matter fluxes is described by the 
cross coefficient h. The latent heat is released in the quasiparticles 
of  the liquid, except for a negligible part in the phonons of  both 
phases. 

(2) The heat has then to cross the Kapitza resistance of  the interface, 
before being evacuated through the solid. The value of RK is 
predicted from the phonon transmission; it is weaker than pre- 
viously expected, as the transverse modes which exist in the liquid 
offer an essential transmission channel. It is in agreement with our 
unconventional measurement of RK at Tin. 

(3) We predict that the variation of RK with T is near from the classical 
law RKT 3 = constant; the transmission should be slightly improved 
at lower temperature, due to an increase of  the importance of 
transverse zero sound. However, more direct measurements of RK 
should be useful to check our indirect value, as well as our predic- 
tions at lower temperatures. 
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APPENDIX A: STUDY OF T S s - ) t  

We will determine the amount  of energy radiated in the phonons bath 
by an atom of  the liquid sticking (or bouncing) on the crystal. This elasticity 
calculation requires us first to calculate the response of the solid to an 
external constraint, i.e. its acoustic impedance. 

A.1. Acoust ic  Impedance of  the Solid 

Let o'xx, O'xy be stresses applied to the surface yz  of  the solid, with a 
frequency to and a wavevector q in the y direction (Fig. 5). The surface 
responds by moving at a velocity (fix, tiy): this velocity is linearly related 
to the stresses. As a percussion creates stresses only in the incidence plane, 
we don' t  consider here any o-=, but this case is easy to carry out. 

Two phonons are emitted, a longitudinal and a transverse, with ampli- 
tudes L and T, at angles ~b and 0 defined by 

sin~b s in0 q 
C l C t tO 

where the sound velocities cl, c, are supposed isotropic for simplicity. They 

~ur~'ace 

f 
/ /  

/ /  

incident f / 
atom 

o = T 
z x 

Fig. 5. Notation used in Appendix A: phonons radiated in the solid by a percussion on the 
surface. 
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correspond to a bulk displacement field in the solid 

(u~) e,(qy_,o,) ( 1 cot dp)( Tei~q"~°t°)~ 
uy = (q/to) k - c o t  0 1 \ L  e '~qx cot * ) /  

The stress tensor is 3° 

OJ k = 2pC2Ujk + 2 2 p(ct --2Ct)UnSjk 
where Ujk =l(akUj+ajUk). Then at the surface ( x =  0), some algebra yields 

trx,,) =_itop( sin20 
O'xy k--COS 2~b 

/Jy - c o t  0 

( ct/ cl) 2 sin 2~b 

COtl ~b)(LT)ei(qY-°'t) 

We obtain then the acoustic impedance matrix [Z]  by writing 

and 

cos ~b s i n (20 -  ~b)) 

P[Z]-I = A ci ci 
• s in(20-~b) cos 0 

Cl C t 

where A = 1 +2(c,/cl) sin 20 sin(0 - ~b). 

A.2. Energy Radiated by a Percussion 

Let us consider an atom which sticks to the solid. When it hits the 
surface, its momentum p has a modulus p ~ p~: and an incidence angle ~. 
We can describe the shock with a form function f(r ,  t) such as: 
SS~f(r, t)dEr dt = 1. The force per unit surface is o- = p  x f ( r ,  t), and we have 

crxx = or cos 0; crxy = cr sin 0; c~z = 0 

The atom radiates in the solid an acoustic energy R e ( ~  us). After decomposi- 
tion of  Crxj on all the modes (to, q) the energy radiated as phonons is 

E=Relf f ff'xjZjklOrxk d2rdt 

1 R e l f f l  ( ~ b c ° s ~ b +  ~b c°s 0~  1 o 1:cOs2 C, sin2 ct / d2qdt° 
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This integration can be solved numerically using the fact that the impact 
is short and localized on an atomic distance a = 3 A. The upper limits of  
the integral are qmax = 27r/a = 2 X 101° m -1 and tOmax = 2"n'v~/a = 
7 x 1011 rad see-l: as these limits are greater than the thermal frequencies 
and wavevectors, the integration domain includes the whole phonon 
spectrum. 

But a simple estimate of  the order of magnitude is obtained by roughly 
replacing A by 1. For a given incidence angle ~ this expression reduces to 

E " ' ~  p~ - - - - [ k B T ~ 3 [ s i n 2 ~ b +  cOs2q/~ 
\ c ,  c, ] 

An average on ~b lets appear  the Debye temperature of  the solid OD 
3 

Erae, - 3 2m \ ® o ]  

This energy represents the fraction of the latent heat released on the solid 
side by an atom sticking to the crystal; the remaining heat is retained in 
the liquid. We then obtain the total latent heat creation per unit mass in 
the solid: ( h -  TSs) = Erad/m. It can be compared to the entropy in the 
solid, i.e., Ss = kB log 2/m. With Oo -~ 17.3 K TM around the melting press- 
ure, we obtain 

A - 1  ~ k ~ T l o g 2 ~ 6 x l 0 - a T  2 

This gives an upper  limit [h/TSs - 1[-< 6 x 10 .5 at Tm = 0.32 K. The energy 
radiated as phonons in the liquid is probably not larger. 

APPENDIX B: DETERMINATION OF RK BY THE ACOUSTIC 
MISMATCH M E T H O D  

This appendix is devoted to the discussion of RK. At first, we justify 
briefly the use of  Little's calculation of RK for a solid-solid interface. 22 We 
then determine the energy transmission coefficient in the 3He solid-3He 
liquid interface; we follow Cheeke, Hebral, and Martinon (CHM),  32 but 
the transverse acoustic impedance of  the liquid is complex. 

B.1. Little's Model  

Little uses a kinetic theory to describe the phonon heat transmission 
between two solids. In the solid 1, there are three phonon modes. For a 
given mode i, the incident heat flux on the interface is 

if If Jbl = ' ~  htoN(to)cl cos O df~ dto 
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where c~ is the velocity of  the mode i, 0 ~ [0, ~r/2] is the incidence angle, 
and N(to ) is the Bose-Einstein distribution. Each phonon has a transmission 
rate zl-2; by taking into account the anisotropy of the sound velocity, the 
heat flux across the interface from solid 1 to 2 writes (within the Debye 
approximation) 

2 (k~T)4 f dO 0 ~,-2(0,_~) 
JQI-2(T) = 30 h a modes• i ~ COS 172(0, ~) 

Or, after derivation: 

aJo~_2(r) 
B 

dT 
2 k~ 4T 3 1/'/ '1-2\ 
30 mo~desi 4 \ C 2 / 

where the term 1/4 comes from the average on the incidence angles O, ch 
on the half-space. Eventually, the Kapitza resistance is given by 

1 _ 1.0x 106 ~ ( ~  
RK T3 \ Ci / 

(RK in cm 2 K W-l;  c in m sec -1) 

Both media play a symmetrical role, which is not obvious in this approach 
where the heat flux is studied only from one side. But the transmission 
coefficient contains all the physical information on the second medium, and 
allows to calculate Rr .  

Little's model presents a paradox: when both solids are identical, i.e., 
when the interface doesn't  exist and r =  1, it predicts a finite surface 
resistance. Katerberg, Reynolds, and Anderson 33 carefully studied the valid- 
ity of this model. They compared it with an alternative derivation 34 in which 
~" is replaced by r / (1  - ~'). Both derivations are equivalent but use a different 
definition of  the temperature. 2° In our case, the growth kinetics is controlled 
by the distribution of  the incident phonons, and we consider the temperature 
as defined by Little. 

B.2. The Phonon Transmission Rate 

CHM describe in detail the complete calculation of r for a solid-solid 
interface. The same algebra can be used here, within a "modified" model 
because the transverse acoustic impedance Z~ of the liquid is complex 
instead of  being real. The Snell-Descartes law formally relates the acoustic 
impedance of each mode to the directions of  the phonons, but here the 
complex angles may lose their geometrical signification. The wave-vectors 
get an imaginary part describing their damping. The four boundary condi- 
tions, given by the continuity of  the stress tensor and by mass conservation 
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at the interface, yield the amplitude transmission rate for an incident 
pressure wave. The calculation involves the inversion of  a 4 x 4 matrix, 
formally identical as CHM.  One must be careful to come back to real 
quantities when determining the energy transmission rate; the energy flux 
associated to each wave is 

Jo  = Re(#xxtix + t~ytiy) 

C H M  can define a critical cone: inside this cone, an incident phonon  is 
partially transmitted and emits in solid 2 a phonon  with a real wavevector; 
outside, the incident phonon  is totally reflected and emits only an evanescent 
wave (overdamped complex wavevector). Here, the emitted transverse 
phonon  has always a complex wavevector, and the transition between the 
transmitted and the reflected domains is very smooth. 

Another  difference with a solid-solid interface comes from its mobility. 
The crystal can grow or melt. The interface tends to keep the pressure to 
its equilibrium value Peq(T), thus creating a pressure node at the surface. 2 
The more mobile the interface, the more it hinders the phonon  transmission. 
RK increases with the mobility; the effect of  k on the transmission is 
described by the dimensionless parameters:  kci(Ap)2/psPL. I f  it is more 
than one, RK is greatly modified; for instance, 4He is an extreme case where 
at zero temperature  k diverges, and RK T3 also diverges. 35 Here, even for 
the quickest mode (ci = 480 m/sec)  this parameter  reaches only 0.2 and RK 
is not much modified. 

To take this effect into account, the boundary  conditions for a massless 
interface is expressed as 

( A p l 2  k _(2)  _ (2 )  _ _ ( 1 )  

• (2) .(1) _ (2 )  _ (1) Uy ~ Uy Oxy -- O'xy 

We included the value k = 0.18 s ecm -1 in the numerical calculations presen- 
ted above. I f  we do them again by taking k = 0, we obtain a diminution of 
RK of  7%. 

C H M  also studied the validity of  the Debye approximation in Little's 
model. They tabulated the error as a function of T/Oo. Here, with 19o = 
17.3 K, the correction is o f  order 3%. 
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