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Analogy between scale symmetry and relativistic mechanics. I. Lagrangian formalism
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Using only the logarithm of physical quantities, we show that the equivalence of all systems of units is
deeply analogous to symmetry by translation in mechanics. Similarly, the equivalence of all systems of units
and subunits helps to generalize usual dimensional analysis, in a curious analogy with speed relativity in
mechanics. This analogy leads to nontrivial practical applications when applied to random fields, whose
moments combine measurements at different scales.@S1063-651X~97!12811-2#
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I. INTRODUCTION

A century ago, Pierre Curie suggested how physic
should use symmetries: ‘‘Constructa priori equations, such
that they respect invariance laws; then confront them to
periments.’’ Our aim is to apply his suggestion to invarian
by dilatation.

Since all systems of units are equivalent, laws of phys
are invariant under a multiplication of basic units. This co
stancy leads to classical dimensional analysis@1–4#. For-
mally, if X is the logarithm of a physical quantityA, and
X05 ln(A0) the logarithm of the unit chosen to measure
X2X0 is ~the logarithm of! the result of the measuremen
laws of physics are expressed in a form invariant unde
translation applied toX0.

Thus invariance by dilatation is trivially analogous to t
invariance by translation we use in real space. Both sym
tries have the same status, namely, they are exact as f
laws of physics are concerned, but when it comes to ac
objects they are always broken by boundary conditio
~lower and upper cutoffs in the case of dilatation symmetr!.
Pushing this analogy further leads however to nontrivial
sults, as we now show~Table I!.

II. POSTULATE

In fact, since all systems of units are really equivale
laws of physics must also remain invariant under a multip
cation of basic unitsand subunits.

A. Equivalence between systems of units

To measure a physical quantity necessitates a direct c
parison with a reference. This is possible only if the ref
ence has a scale comparable with the quantity to be m
sured. You do not use the same apparatus to measure le
in astrophysics, or in nuclear physics. Converting one sc
to another is a difficult metrology problem, exactly as t
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conversion from one unit to the other. The first comparis
of the Earth meridian with a platinum meter~and, a century
later, with an atomic wavelength! involved a challenging
cascade of multiple comparisons. Secondary references,
subunits or surunits, are as vital as basic units themselve
unit system, based on a unitA0, always defines a complet
setAi of subunits, withi a positive or negative integer. The
have a significance independent of each other; for insta
astronomical unit, light year and parsec are simply defined
relation to each other, and used for precision measurem
even without knowing precisely their value expressed
meters. Each measurement setup operates only in a g
finite range, say around thenth subunitAn.

The resolution of the system, around this scale, is the r
Kn5An /An21 of two successive subunits. Thenth scale is
then

l n5l 0Kn5l 03K3•••3K. ~1!

Here n is an integer number,l 0 the unit chosen for the
scales, andK the chosen resolution, meaning that lnK is the
logarithmic increment between two successive subunits.
instance,K52 for a block renormalization, orK infinitely
close to 1 for a continuous renormalization; for simplicity w
consider only the caseK.1 ~see Ref.@15# in Sec. III B!. The
physical laws describing the properties ofl are expressed
using the labeln; their formulation should not depend on th
choices ofl 0 andK.

Thus the log coordinates@5#

T5
1

lnK
lnS l

l 0
D ,

~2!

X5
1

lnK8
lnS A

A0
D

are not only invariant under an arbitrary choice of the orig
(T0 ,X0)5(lnl 0 ,lnA0): they are also invariant under an arb
trary change of (lnK,lnK8), i.e., a variation of the origin with
scale, or ‘‘gauge invariance’’ taken in its original acceptio
@6#. These symmetries are sometimes called ‘‘global’’ a
6427 © 1997 The American Physical Society
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TABLE I. Proposed analogy between the present series of articles and relativistic mechanics. No
are defined as in Ref.@9#.

Exponent relativity Speed relativity

Definitions

log of the scaleT time t
log of the momentX positionx
unit l 0 origin of time axist0

reference fieldR origin of space axisx0

system of units and subunits system of coordinates

scaling exponentẊ5dX/dT speedẋ5dx/dt
power-law reference field tangent Galilean reference frame
relative variation of reference fields: exponentVR8uR relative speed of reference frames:vx

08ux0

statistics kinematics
variation with scale dynamics

Symmetries

free choice of the system of subunits free choice of referential
arbitrary choice of units arbitrary origin of space
scale-dependent resolution arbitrary coordinates
scale symmetry of the system homogeneity of space
lower and upper cutoffs boundary conditions
single variable transformation locality of physical laws
no analog symmetryl →1/l space and/or time symmetry
concavity of intermittency function causality

Transformation group

transformations between moments inertial transformations
characteristic exponentC characteristic speedc
L>1 L[0
G(V)5@122LV/C1(L221)V2/C2#21/2 g(v)5@12v2/c2#21/2

invariant exponentsC1 ,C2 invariant celerities1c,2c
random process particle trajectories, or field
scale invariant process free particle or free field
intermittent structures massless particles
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‘‘local’’ scale invariances@7#. When expressed in log vari
ables, a scaling lawA;l z with a fixed exponentz becomes
X;VT, analog to a trajectory with a fixed velocity. Whil
the former invariance is analogous to translation invaria
on (T0 ,X0), the latter invariance is exactly analogous to G
ilean invariance, namely, a~Newtonian or Einsteinian@7–
11#! change between referentials moving at a constant r
tive rate.

This implies that laws of physics can express relatio
between exponents defined asdX/dT ~say ‘‘this exponent is
twice that other one’’! but not single out a privileged valu
~‘‘this exponent is equal to three’’!. However, up to now
there has been nothing very new in it. Put it another way:
writing T5 logK(l /l 0) andX5 logK8(A/A0), we see that Eq
~2! is nothing more than the freedom to choose the basi
the logarithm. Since it is not crucial, the international syst
choseK5K8510 consistently, and forgot about it. For d
terministic fields, this is in fact a trivial consequence of
well-known property: if a quantityf scales withl , thenfa

also scales withl b with another exponent@12#.
For random fields,̂fa& and ^f&a can be very different,

and this property leads to interesting consequences. In
e
-
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ct,

successive moments of a random field combine meas
ments at different scales, so thatT and X become coupled
variables~in the same way as space and time are couple
Einsteinian mechanics!. Instead of being additive, scaling ex
ponents obey a composition law analog to Lorentz comp
tion for velocities @9,14,7#. This analogy is profound, and
exact in most details~Table I!. But before turning to non-
trivial applications, which will be explored below, let us fir
speculate on the last consequences of our postulate.

B. Distinctions between systems of units

More generally, the ratio between successive subunits
vary with scale. For instance, foot-pound-hour or centime
gram-second is as acceptable as meter-kilogram-second
inch-foot-mile constitutes an acceptable system of subun
The resolutionKn5l n11 /l n , which varies with the scale

l n5l 03K13 . . . 3Kn , ~3!

is now analogous to general relativity, where your coordin



he
n

n
n

-
ny
a

,

ll
le
in
nn
s
c

ly
ew
fte
o

a
t
n
im

a

tio
m

ith

d

s

ce,

ls

a
a-
if-
ile

f the
r-
y
s the

.
r
en
o-

po-
l or
ly

w
he
nder

ne
This
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system~and hence your unit, with which you measure t
distance between two positions! may depend on the positio
itself ~Appendix A!.

Of course, as long as the scale space is flat and
curved, laws will take a much simpler form in a ‘‘Galilea
referential’’ system, i.e., a system where subunits follow
regular geometrical progression. Nothing constrainsK(l ),
but life is easier withK constant. Try to write down New
ton’s gravitational law under a universal form valid at a
scale, using feet and yards. Some unit systems are re
more equivalent than others, as George Orwell would say@G.
Orwell, Animal Farm ~Martin Secker & Warburg, London
1945!.

Conversely, if the scale space is curved, there is sti
subunit system in which laws of physics take their simp
expression, but it can vary with the scale. Can we imag
such a curvature of the scale space? Curvature which ca
be suppressed only by changing the metrics should be a
ciated with a coupling between different scales. For instan
a wholesaler buying 1000 roses at a cheap price~money to
rose conversion factor is low at large scale!, retails them at a
higher unit price~money to rose conversion factor for on
one rose is high!. He puts his benefit aside and starts a n
cycle. His benefit is the curvature enclosed by his cycle, a
parallel transportation in the scale space curved by the n
linear relation between roses and money.

III. RANDOM FIELDS

Let us now consider a ‘‘process’’f, i.e., a scalar random
field, e.g., in isotropic homogeneous turbulence@10#. The
variables (T,X) define a space-time with only 111 dimen-
sions. In relativistic mechanics, this implies that clocks c
be unambiguously synchronized in the whole space: here
log scaleT can be univocally defined. One can always co
struct an inertial referential so that physical laws take a s
pler expression; the formalism becomes global instead
local.

We thus concentrate on a formalism with resolutionsK
andK8 which do not depend on scale, which means they
not pertinent anymore@12#. Instead off, we prefer to deal
only with deterministic numbers, and thus use the connec
between possible values of a random variable and its
ments@14#.

The complete formalism is tedious; see Appendix A. W
constant resolutions, Eqs.~A1! and~A5! yield simple expres-
sions for log variables:

T5 lnS l

l 0
D ,

X~T!5
d ln^~f l /Rl !p&

dp
5

^ ln~f l /Rl !~f l /Rl !p&

^~f l /Rl !p&
,

~4!

wheref is a random positive physical quantity, andf l the
same field defined at scalel . X thus depends onp and is
defined from pmin to pmax, characterizing the lower an
higher convergent moments of the distribution. Asp varies
between these limiting values,X takes all the possible value
of the logarithm of the random fieldf l .
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These notations turn particularly convenient; for instan
the variableẊ5dX/dT is the multifractal exponent of the
random field@14#. The analogy we develop below revea
their physical significance.

A. Group law for scale transformations

We thus fall back to our previous papers@9,14#, to which
we refer the reader for more details. Briefly, we defined
similarity transformation analogous to Lorentz transform
tion, connecting different values of the random fields, at d
ferent scales, in different realizations. It is obtained wh
changing from a first momentn to a new onep @14#, or,
equivalently, from a first reference fieldR to a new oneR8
moving with a relative exponentVR8uR @9#. Two parameters
are necessary: the first one, an exponent characteristic o
physical system, is notedC to stress the analogy to the Lo
entz group; the second one,L, characterizes the symmetr
breaking between large scales and small scales: it break
parity T→2T, X→2X or V→2V.

The matrix S̄̄(V) of similarity transformations is written

S CT8

X8
D 5 S̄̄~V!S CT

X D
5G~V!S 122LV/C ~L221!V/C

2V/C 1 D S CT

X D , ~5!

where we defined

G~V!5
1

A~L221!V2/C222LV/C11
. ~6!

Note thatC plays no other role than a typical ratioX/T, and
would disappear under a rescalingT→CT,V→V/C @13#.
More clearly, as in speed relativity,C does not appear in the
metrics of the log space, see Appendix B.

The composition law for exponents,

V^ V85
V1V822LVV8/C

12~L221!VV8/C2
, ~7!

admits two fixed pointsC6 which play an essential role
Starting from an exponentC2<V<C1 , one obtains anothe
exponent in the same interval. The two fixed points th
characterize the minimum and maximum multifractal exp
nents of the random field. In Ref.@14#, we classified all ac-
ceptable transformations according to whether these ex
nents are zero, finite, or infinite; whether they are equa
different. They characterize the set of so-called log-infinite
divisible laws, including for example the log-normal la
(C656`). In these preceding papers, we justified t
shape of above equations, and showed that it is unique u
sound, minimal postulates.

B. Interest of this formalism

The aim of the preceding papers@9,14# was to study the
link between successive moments, but at a fixed scaleT.
Now our aim is to determine how a measurement at o
scale is related to another measurement at another scale.
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6430 56F. GRANER AND B. DUBRULLE
amounts to finding a renormalization trajectoryX(T), i.e.,
the trajectory of a pointlike particle@15# and the dynamica
equations which govern it.

To obtain a partial differential equation with respect to t
scale, it could in principle be possible to use an extrem
action principle based on a Lagrangian formulation. This
proach, inspired by Castaing@16#, has three objectives:~i! to
obtain a new point of view~see Sec. V C!; ~ii ! to have a
technique at one’s disposal:~see Sec. IV!; and~iii ! to stimu-
late new models respecting the scale symmetry, before
fronting them to the judgment of experiment.

Of course, this latter objective is interesting only when t
physical mechanism under consideration is actually scale
variant, in the sense that coupling between scalesl and l 8
does not explicitly depend separately on them, but o
through the combinationl /l 8. In this case, a Lagrangia
which respects the symmetry might become pertine
Boundary conditions~at lower or higher cutoffs! evidently
break the symmetry of solutions, but that does not make
method less powerful.

Of course, the actual expression of the Lagrangian
pends on the physical problem under consideration. Sym
try arguments alone cannot entirely determine dynam
equations. But at least they can set strong constraints on
shape, as we will now see by turning to the complete form
ism.

IV. LAGRANGIAN FORMALISM

In fact, analogy with special relativity teaches us a lot.
a (111)-dimensional space-time (x,t), dynamics cannot be
coupled to space-time curvature. There are not many po
bilities left.

For a free particle in special relativity, the only possib
definition of the scalar action is the integral of2ads, and
the associated Lagrangian isL(x,v)52ac/g(v). Here a
must be a positive real number; to ensure corresponde
with the Newtonian dynamics, it is identified tomc, where
the massm is a scalar characteristic of the particle.

Now, as far as interactions are concerned, the only po
bility left open by symmetry is the existence of an elect
field, but no magnetic field. We explore this minimal versi
of electromagnetism in Sec. IV A.

A. Lagrangian formalism for a scale-invariant process

A free particle corresponds here to a fully scale-invari
process, i.e., withẊ independent of the scale, associated w
the Lagrangian, impulsion, and energy~Appendix C!:

L52
MC2

G~Ẋ!
,

P5
]L~X,Ẋ!

]Ẋ
, ~8!

E5PẊ2L,

where M is a constant yet unspecified, and we defin
G(Ẋ)225(L221)Ẋ2/C22LẊ/C11 according to Eq.~6!.
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The corresponding Euler-Lagrange equation is trivial,

dP
dT

50, ~9!

meaning of course that the exponentẊ does not depend on
scale. This validates the present formalism on the stric
self-similar case; however, evidently we do not learn an
thing as long as we do not specify which physical proble
we are studying.

B. Electric field

If we now introduce an electric field~see Sec. III B!, the
generalized impulsion

P5]L/]Ẋ ~10!

undergoes a force obeying the Euler-Lagrange equation~D3!

MC
d

dT
S GFL2~L221!

Ẋ

C
G D 5eE, ~11!

whereE is the analog of an electric field; see Appendix D
Symmetry constraints on the fieldE, or equivalently on

charge distribution, are far less severe than on the tridim
sional full electromagnetism@17#. In fact, in such a one-
dimensional space, the magnetic field being necessarily z
Maxwell’s equations reduce to

]E

]X
5r,

~12!

]E

]T
52J.

The permittivity is taken equal to 1. Herer is the analog of
the charge density, andJi5(Cr,J) is a bivector with zero
divergence:

] iJ
i50.

Note thatE varies smoothly wherer is finite. Conversely,
for a point charge moving along a trajectoryX5R(T), then
r5ed@X2R(T)# is a Dirac peak,J5rdR/dT, andE(X,T)
is constant piecewise: it is a step function with a discontin
ity along the trajectory of the charge.

If eE/MC is given, one can solve Eq.~11! to determineG
as a function of the log scaleT, and then obtainẊ. An
example relevant to turbulence is provided in our compan
paper@18#. To follow this trail further, it is now necessary t
propose a model forE, or equivalently for a charge distribu
tion. This is outside the scope of the present paper, since
task relies on experiments and not simply on symmet
considerations. In that respect, it would be interesting
study the ‘‘inverse problem,’’ i.e., to determine the char
density required to interpret experimental measurements
scale-invariance properties are relevant in various fie
such phenomenological approach will eventually lead to
more synthetic theory.
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C. Link between different moments

In Refs.@9,14#, we studied the link between moments
random fields, at a given scale. In the present paper, we fo
on the scale dependence of a given moment. This is
scribed by a Lagragian theory. Working out the depende
with respect to both scale and order of moments at the s
time is feasible, but, in general, complicated. The reaso
that the trajectory giving the scale dependence of the
ment of ordern, say, can be viewed as the trajectory of t
moment of ordern21, in the ‘‘accelerated’’ frame attache
to the trajectory of the moment of order 1, a frame which
not Minkowskian in general. Such a computation is form
lated by a Euler-Lagrange equation including terms linked
the T dependence of the metrics,

dẊa

dS
1Gbm

a ẊbẊm5
Fa

M
, ~13!

whereF is the force,S the proper time, andGbm
a the connec-

tion coefficient of the metrics. In the Newtonian limit, how
ever, these connection terms can be simply described by
ertial forces. This limit corresponds here to the case o
log-normal statistics for the random process. This ca
relevent to hydrodynamical turbulence, is studied in o
companion paper@18#.

V. CONCLUSION

Our three objectives were to propose a method; to de
predictionsa priori, as well as tools to analyzea posteriori
experimental data; and to suggest an interesting poin
view. Let us summarize how we have fulfilled these thr
points.

A. Summary of the method

In mechanics in a space-time with 111 dimensions, you
assume that all inertial coordinate systems are equiva
This is called ‘‘speed relativity.’’ You add that space an
time are invariant by translation and parity: of course, t
does not mean that physical objects are invariant by tran
tion ~they are not infinitely long!, but that the equations
which govern them are. This suffices to tell you what is t
composition law for velocities. There is only one free para
eter, the squarec2 of the invariant velocities6c; this is
positive to satisfy the causality principle. So you have o
two possible mechanics: the Galilean and the Lorentzian
netics, respectivelyc finite and infinite, and the associa
dynamics, respectively Newtonian and Einsteinian. It is
the symmetry but the experiments which fix the value oc
@22#.

Since the pioneering work of Nottale@8#, approaches in-
spired by Einstein have been applied to scale symmetry
principle analogous to speed relativity might impose stro
constraints on the possible statistics of random processe
scale-invariant systems@7,9–11#. What is our approach? You
consider a random field. You want to know its probabil
distribution, i.e., a relation between its successive mome
and you also want to know its scale dependence. You ren
it dimensionless properly, then take its logarithm for conv
nience, so that you deal with an invariance by translati
us
e-
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Then you assume that you have the free choice of your
tem of units and subunits. This we call ‘‘exponent relati
ity.’’

As we showed in Ref.@9#, this ‘‘exponent relativity’’ lim-
its the possible statistics, which can be classified accord
to the exponentsC1 andC2 . They are not necessarily op
posite, since we do not assume that large scalesT→` are
equivalent to small scalesT→2`; thus C1 and C2 can
independently be finite or not, so that makes more than
two possible physics.

In the present paper, we showed how to construct
equation to describe how your random field varies withT,
i.e., with the scale. The shape of the equation is compat
with exponent relativity, i.e., with the requirements of sca
invariance. Of course, the ingredients you plug into t
equation, namely, the force source which induces the cas
in scale, or the actual response of your field, need not
scale invariant themselves, but the relation between them

B. Summary of the results

We thus derived a Lagrangian formalism, in a rath
speculative way, with the following results.

~i! It shows that the analogy between scale symmetry
relativistic mechanics is not only formal, but deeply root
in their postulates and in their thought processes.

~ii ! It introduces a Lagrangian formalism applicable
coupled random fields, suggesting the existence of a qua
conserved along the scales. This provides a framework
generalize usual dimensional analysis.

~iii ! As we show in our companion paper@18#, this offers
a hope to reach a fully scale-covariant description of tur
lence which does not give greater importance to large sc
or to small scales, generalizing Kolmogorov’s approach.

~iv! As we show in our companion paper@18#, we can
solve the Euler-Lagrange equation in a simple but nontriv
case.

~v! A formalism does not itself make predictions abo
the force source; however, it is a tool to describe and a
lyze. Given an experimental result, and keeping turbule
in mind, we know which variable to plot as a function o
scale, where we should look for a conserved quantity,
how to prepare a phenomenological model.

C. Summary of our ideas

We are working in the space of the log of the scale a
the log of averages of a random field. In this space, a gi
Lagrangian and its associated deterministic Euler-Lagra
equation define a family of trajectories. Boundary conditio
~e.g., fixing a value at two different points, or a value a
derivative at one point! select one trajectory in that family
unambiguously.

~i! Particular boundary conditions, e.g., rejected at infi
ity, can select familiar power-law solutions. These are
neric solutions, i.e., they are robust and appear independe
of the physical mechanism. Of course this appears only
theoretical, idealized cases, such as Kolmogorov’s fully
veloped turbulence~infinite Reynolds number! or critical
points in infinite systems.

~ii ! However, for other types of boundary conditions, t
same equations which respect the same scale symmetr
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6432 56F. GRANER AND B. DUBRULLE
lect different solutions, which are also generic in the sa
sense. Among these are, e.g., stretched exponentials, kn
to preserve scale symmetry@16,19,18#. In such solutions,
boundary conditions are felt over a certain scale range, le
ing to the natural appearance of a crossover scale visib
experimental data or theoretical predictions. In the exam
of turbulence, this crossover is the Kolmogorov leng
which separates a laminar~‘‘dissipative’’! range and an in-
termittent~‘‘inertial’’ ! range. In critical phenomena, it is th
correlation length which separates correlated and unco
lated scales.

In our opinion there is a flaw in the classical approa
which bases its dimensional analysis only on this crosso
scale, considered as the only physically pertinent length s
until it grows larger than the system size. We find hard
reconcile this view with~i!, which does not imply any cross
over. Conversely, in our point of view both~i! and~ii ! fit into
a single, coherent picture.

Our method makes noa priori assumption about the so
lution we seek. As long as the underlying physical mec
nism is scale invariant, our method is valid, whether cuto
are close or far away~i.e., whether data are spanned ove
small or large number of decades!. To analyze experimenta
data, following Pocheau’s recommendations@7#, we do not
look for slopes of straight lines in a log-log plot, but rath
look for physical mechanisms which couple the scales.
thus propose to look for a new variable, which we defined
a formal analogy with an electric field in mechanics~or,
equivalently, the analog of a potential; see Ref.@18#!. This
characterizes the amount of curvature of the log-log plot,
points out the physically relevent length scales of the pr
lem, including of course the boundary conditions. Thus
periment will teach us whether and when this description
pertinent.
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APPENDIX A: ANALOGY WITH GENERAL RELATIVITY

1. Notations

In order to generalize the notion of resolution, let
imagine a continuous slicing of the scale space: at each s
l we have a different subunit, a function ofl . This function
is continuous; its logarithmic derivative is lnK. This estab-
lishes an atlas of overlapping maps covering the scale sp
We now generalizen as a continuous variable, namely, th
real numberT, the differential of which is:

dT5
1

lnK~ l !
d lnS l

l 0
D . ~A1!

Similarly, let f be a random positive physical quanti
andf l the same field defined at scalel . The analogs of the
Ki aren independent random fieldsWi :

f l 5Rl 3W13 . . . 3Wn , ~A2!
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whereRl is a reference field, possibly random and/or sc
dependent@9#. In the analog of the rationalized case, w
choose allWi with an identical probability distribution. This
corresponds to infinitely divisible laws@20#, with moments
following:

K S f l

Rl
D pL 5^Wp&n5S l

l 0
D ln^Wp&/ lnK

, ~A3!

where^ & denotes an average on realizations. The more g
eral choice relaxes the requirement of^Wi& being identical,
assuming only they are greater than 1. An equation in
same spirit as in Eqs.~3! and~A1!, could then be written for
the random variablef l , but it would not be very convenien
to use, because of the randomness off l . To deal only with
deterministic numbers@14#, we introduce the following
p-dependent quantity:

d ln^~f l /Rl !p&
dp

5
^ ln~f l /Rl !~f l /Rl !p&

^~f l /Rl !p&
, ~A4!

and thus define the log variableX such as

dX5
1

lnK8~ l !

d2

dp
@ ln^~f l /Rl !p&#, ~A5!

whereK8 is a number, related to the moments of the dis
bution W in a way similar to Eq.~A4!.

2. Postulate

Our choice of system of units and subunits is entirely fr
so that, in Eqs.~A1! and ~A5!, K and q can arbitrarily de-
pend, not only on the length scalel , but also on the scale o
the fieldf itself. In analogy with general relativity, we pos
tulate thatphysical laws can always be written under a sha
suitable to any system of units and subunits, whether ratio-
nalized or not.

This implies that equations must be correctly written a
cording to the tensorial formalism~see Appendix B!. The
space of the two variablesX05CT and X15X is homoge-
neous; hereC is an exponent characteristic of the physic
system under consideration. In this two-dimensional spa
the physically significant quantity is the scalar infinitesim
interval

dS25gi j dXidXj , ~A6!

a quadratic function of the coordinate differentials.
The coefficientsgi j depend on the choice of the units an

subunits, and may vary withXi . Physically, they indicate
how two different observers can compare their observatio
each one using its own set of units and subunits. The va
tions of thegi j , i.e., their derivative, with respect to the lo
scaleT or to the logX of the measured random field, cha
acterize how rationalized the unit system is.

3. Possible dynamics

Let us mention here the constraints set by the dimens
of the space-time on possible dynamics.
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~i! The trivial case where the field is not random but d
terministic allows only a single variableT, and no dynamics
The same is true for a random quantity involving only o
scale, described by a single variableX; there is of course no
dynamics.

~ii ! A process is a scalar random field, e.g., in isotro
homogeneous turbulence@10#. The variables (T,X) define a
space-time with 111 dimensions. Dynamics cannot b
coupled to space-time curvature. It is this ‘‘special relat
ity’’ that we develop throughout the present paper.

~iii ! With two random fields instead of one, the space-ti
(CT,X1,X2) acquires 112 dimensions. An example is
temperature passively advected by a turbulent isotropic
locity field @21#. In this case, rudimentary versions of grav
tation or electromagnetism are allowed.

~iv! With D>3 different fields, or different component
of a vector field, the set of labelsXi ,i 51, . . . ,D, along with
X05CT, defines an homogeneous space with four dim
sions or more, where the tools of general relativity apply

APPENDIX B: TENSORIAL FORMALISM

The analogy presented in Table I introduces for

(CT,X) space a constant metric tensorḡ̄ , i.e., all Christoffel
symbols being identically zero@17#. The space-time is flat
and we are in special relativity. The only possible metric, l
invariant by all similarity transformations~5!,

S̄̄t~V!. ḡ̄ . S̄̄~V!5 ḡ̄ , ~B1!

is, up to a multiplicative constant,

ḡ̄5~gi j !5S 1 2L

2L L221D ; ~B2!

we keep the solution with determinant21.
This metric gi j reflects the fact that the relatio

gi j R
iRj50, characterizing an intermittent structure,

equivalentlyQ}l C6, is invariant under any similarity trans

formation. Its matrixḡ̄ is diagonalizable and invertible:

ḡ̄215~gi j !52S L221 L

L 1 D .

Note thatg11 andg00 vanish in the log-Poisson case.
More generally, we define a full bidimensional tensor

formalism, also valid in general relativity, i.e., even in
four-dimensional space-time: with the convention that
peated indices are summed as follows:~a! contravariant
bivectors, e.g., the infinitesimal radius vect
dXi(T)5@CdT,dX(T)#; ~b! covariant bivectors, such
as dXi5gikdXk; ~c! a scalar product dXidXi

5gikdXidXk5(CdT)222LdX(CdT)1(L221)dX2; ~d!

thus a scalar infinitesimal intervaldS5CdT/G(Ẋ), where
Ẋ5dX(T)/dT; ~e! a scalar derivatived/dS; ~f! a covariant
derivative ] i5]/]Xi ; ~g! a scalar second-order derivativ
the d’Alembertian ] i]

i5(12L2)]C2T2
2

22L]CT,X
2 2]X2

2 ;

and ~h! a derived bi-vectorẊi5dXi /dS5@G(Ẋ),G(Ẋ)Ẋ/C#

obeyingẊi Ẋ
i51.
-
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-
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-

e
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-

APPENDIX C: LAGRANGIAN FORMALISM
FOR A SCALE-INVARIANT PROCESS

A free particle in special relativity corresponds here to
fully scale-invariant process, i.e., withẊ independent of the
scale, associated with the impulsion and the energy:

P5
]L~X,Ẋ!

]Ẋ
5

]

]Ẋ
S 2

MC2

G~Ẋ!
D 5GMCFL2~L221!

Ẋ

C
G ,

E5PẊ2L5GMC2F12L
Ẋ

C
G , ~C1!

In tensorial formalism, this is written

Pi5MCẊi5GMCS 1

Ẋ/C
D ,

Pi5S E/C
2PD . ~C2!

APPENDIX D: LAGRANGIAN FORMALISM
WITH AN ELECTRIC FIELD

With a force source, the action, and thusGL, must still
remain a scalar, so thatL can take the form

L52
1

G~Ẋ!
@MC21eẊiA

i #, ~D1!

where the vectorAi5(F,A). The possible significance o
the scalarsM and e and the potentialsA and F depend on
the physical quantity we want to describe, e.g.,e or du in
turbulence@9#.

Since the generalized impulsion is the covariant deri
tive of the action, we havePi5MCẊi1eAi /C:

P5GMCFL2~L221!
Ẋ

C
G1

e

C
@LF2~L221!A#,

~D2!

E5GMC2F12L
Ẋ

C
G1e@F2LA#.

The Euler-Lagrange equation yields a force~11!:

d

dT
S GMCFL2~L221!

Ẋ

C
G D 5eE, ~D3!

whereE is the analog of an electric field:

E52]XF2L]CTF1L]XA1~L221!]CTA. ~D4!

Let us make three comments:
~i! Note that using the antisymmetric tens

Fik5] iAk2]kAi , we have the relationE5F01, and Eq.
~D3! appears as the first component of the vectorial equa

C2
dMẊi

dS
5eFikẊk. ~D5!
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~ii ! Whenever the Lagrangian is scale independent, i.e
long asT does not appear explicitly, the energyE is equal to
the HamiltonianH(P,T)5PẊ2L and the equation of mo
tion reduces to

GMC2F12L
Ẋ

C
G1e@F2LA#5const. ~D6!
s
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as ~iii ! This formalism has the symmetries of electromagn
tism in a one-dimensional space:~a! no magnetic field;~b!
invariance by parity;~c! general covariance under similarit
transformations@9# ~note, e.g., thatE25uFu is an invariant,
i.e., transforms as a scalar, and thus so doesE!; and ~d!
electromagnetic gauge invariance, which leaves the cho
e.g., F50, A50 or the more symmetric Lorentz gaug
] iA

i50.
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