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Using only the logarithm of physical quantities, we show that the equivalence of all systems of units is
deeply analogous to symmetry by translation in mechanics. Similarly, the equivalence of all systems of units
and subunits helps to generalize usual dimensional analysis, in a curious analogy with speed relativity in
mechanics. This analogy leads to nontrivial practical applications when applied to random fields, whose
moments combine measurements at different scEd€63-651X97)12811-3

PACS numbeps): 02.50-r, 06.20.Fn, 11.306:j

[. INTRODUCTION conversion from one unit to the other. The first comparison
of the Earth meridian with a platinum met@and, a century
A century ago, Pierre Curie suggested how physicistdater, with an atomic wavelengthnvolved a challenging
should use symmetries: “Construatpriori equations, such cascade of multiple comparisons. Secondary references, i.e.,
that they respect invariance laws; then confront them to exsubunits or surunits, are as vital as basic units themselves. A
periments.” Our aim is to apply his suggestion to invarianceunit system, based on a ufi, always defines a complete
by dilatation. setA; of subunits, withi a positive or negative integer. They
Since all systems of units are equivalent, laws of physicdave a significance independent of each other; for instance,
are invariant under a multiplication of basic units. This con-astronomical unit, light year and parsec are simply defined in
stancy leads to classical dimensional analydis4]. For- relation to each other, and used for precision measurement,
mally, if X is the logarithm of a physical quanti, and even without knowing precisely their value expressed in
Xo=In(Ay) the logarithm of the unit chosen to measure it, meters. Each measurement setup operates only in a given,
X—Xg is (the logarithm of the result of the measurement: finite range, say around theh subunitA,,.
laws of physics are expressed in a form invariant under a The resolution of the system, around this scale, is the ratio
translation applied t,. K,=A,/A,_, of two successive subunits. Tmeh scale is
Thus invariance by dilatation is trivially analogous to the then
invariance by translation we use in real space. Both symme- , Cn
tries have the same status, namely, they are exact as far as /0= oK'=7gX KX+ XK, )
'a"_VS of physics are concerned, but when it comes to aptu%ere n is an integer numbery, the unit chosen for the
objects they are always broken by boundary Condltlonsscales andk the chosen resolution, meaning thaKlis the
(lower and upper cutoffs in the case of dilatation symmetry | : h o b ' 9 bunits. F
Pushing this analogy further leads however to nontrivial re—.Ogarlt mlc_lncrement etween two successive sul Fm'ts' or
sults, as we now showTable ). instance K=2 for a block renormaI!zat!on: oK |.nf|n|.telly
close to 1 for a continuous renormalization; for simplicity we
consider only the cad€>1 (see Ref[15] in Sec. Ill B). The
Il. POSTULATE physical laws describing the properties Sfare expressed

In fact since all svstems of units are reallv equivalent using the labeh; their formulation should not depend on the
y y Y €q 'choices of/, andK.

Iavv_s of phyS|_cs must also remain invariant under a multipli- Thus the log coordinate§]
cation of basic unit@and subunits

1 /
A. Equivalence between systems of units T= Wln(:) ' @
To measure a physical quantity necessitates a direct com-
parison with a reference. This is possible only if the refer- X = 1 In A
ence has a scale comparable with the quantity to be mea- InK’  \Ag

sured. You do not use the same apparatus to measure lengths
in astrophysics, or in nuclear physics. Converting one scalare not only invariant under an arbitrary choice of the origin
to another is a difficult metrology problem, exactly as the(Tg,Xg)=(In/,InAy): they are also invariant under an arbi-
trary change of (IK,InK’), i.e., a variation of the origin with
scale, or “gauge invariance” taken in its original acception
*Electronic address: GRANER@UJF-GRENOBLE.FR [6]. These symmetries are sometimes called “global” and
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TABLE |. Proposed analogy between the present series of articles and relativistic mechanics. Notations
are defined as in Ref9].

Exponent relativity Speed relativity
Definitions
log of the scaleT timet
log of the momeniX positionx
unit /g origin of time axistg
reference fieldR origin of space axixg
system of units and subunits system of coordinates
scaling exponenk=dX/dT speedx=dx/dt
power-law reference field tangent Galilean reference frame
relative variation of reference fields: exponéfi,z  relative speed of reference fram®§é|xo
statistics kinematics
variation with scale dynamics
Symmetries
free choice of the system of subunits free choice of referential
arbitrary choice of units arbitrary origin of space
scale-dependent resolution arbitrary coordinates
scale symmetry of the system homogeneity of space
lower and upper cutoffs boundary conditions
single variable transformation locality of physical laws
no analog symmetry’— 1// space and/or time symmetry
concavity of intermittency function causality

Transformation group

transformations between moments inertial transformations
characteristic exponei@ characteristic speed

A=1 A=0
T(V)=[1-2AVIC+(A?-1)v?C?]~ 1?2 y()=[1-v?c?]~?
invariant exponent€ , ,C_ invariant celerities+c,—c
random process particle trajectories, or field
scale invariant process free particle or free field
intermittent structures massless particles

“local” scale invarianceq 7]. When expressed in log vari- successive moments of a random field combine measure-
ables, a scaling la~ /¢ with a fixed exponent becomes ments at different scales, so tHatand X become coupled
X~VT, analog to a trajectory with a fixed velocity. While variables(in the same way as space and time are coupled in
the former invariance is analogous to translation invariancé&insteinian mechanigsinstead of being additive, scaling ex-
on (Ty,Xg), the latter invariance is exactly analogous to Gal-ponents obey a composition law analog to Lorentz composi-

ilean invariance, namely, Newtonian or Einsteiniai7—  tion for velocities[9,14,7. This analogy is profound, and
11]) change between referentials moving at a constant relaexact in most detail§Table ). But before turning to non-
tive rate. trivial applications, which will be explored below, let us first

This implies that laws of physics can express relationsspeculate on the last consequences of our postulate.
between exponents defined@&¥/d T (say “this exponent is
twice that other one)’ but not single out a privileged value
(“this exponent is equal to threg! However, up to now
there has been nothing very new in it. Put it another way: by More generally, the ratio between successive subunits can
writing T=logk(/// ) andX=logk,(A/Aj), we see that Eq. vary with scale. For instance, foot-pound-hour or centimeter-
(2) is nothing more than the freedom to choose the basis ajram-second is as acceptable as meter-kilogram-second and
the logarithm. Since it is not crucial, the international systeminch-foot-mile constitutes an acceptable system of subunits.
choseK=K'=10 consistently, and forgot about it. For de- The resolutiorK,=/,,,1//,, which varies with the scale
terministic fields, this is in fact a trivial consequence of a
well-known property: if a quantityp scales with/’, then ¢“ /o=l oXK X L XK, 3)
also scales withr’? with another exponertL2].

For random fields{¢*) and{¢)* can be very different,
and this property leads to interesting consequences. In fads now analogous to general relativity, where your coordinate

B. Distinctions between systems of units
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system(and hence your unit, with which you measure the These notations turn particularly convenient; for instance,

distance between two positionsiay depend on the position the variableX=dX/dT is the multifractal exponent of the

itself (Appendix A). random field[14]. The analogy we develop below reveals
Of course, as long as the scale space is flat and naheir physical significance.

curved, laws will take a much simpler form in a “Galilean
referential” system, i.e., a system where subunits follow a
regular geometrical progression. Nothing constrafi(g"), ] )
but life is easier withk constant. Try to write down New-  We thus fall back to our previous pap¢gs14], to which
ton’s gravitational law under a universal form valid at any We refer the reader for more details. Briefly, we defined a
scale, using feet and yards. Some unit systems are rea||;5)mllarl'[y transforr_naﬂon analogous to Lorentz _transforma—
more equivalent than others, as George Orwell would&ay tion, connecting dlfferent value_s of_ the ran_dom flelds, at d_|f-
Orwell, Animal Farm (Martin Secker & Warburg, London, ferent scales, in different realizations. It is obtained while
1945. changing from a first momem to a new onep [14], or,
Conversely, if the scale space is curved, there is still &duivalently, from a first reference field to a new oneR'
subunit system in which laws of physics take their simplermoving with a relative exponeitz | [9]. Two parameters
expression, but it can vary with the scale. Can we imaginé@re necessary: the first one, an exponent characteristic of the
such a curvature of the scale space? Curvature which cannBfysical system, is noted to stress the analogy to the Lor-
be suppressed only by changing the metrics should be assédtz group; the second on4, characterizes the symmetry
ciated with a coupling between different scales. For instanceéireaking between large scales and small scales: it breaks the
a wholesaler buying 1000 roses at a cheap piigeney to  party T——T, X——X orV—-—V.
rose conversion factor is low at large soaketails them at a The matrix S(V) of similarity transformations is written
higher unit price(money to rose conversion factor for only
one rose is high He puts his benefit aside and starts a new CT'\ = (CT
cycle. His benefit is the curvature enclosed by his cycle, after | y: | =S(V)|
parallel transportation in the scale space curved by the non-

A. Group law for scale transformations

linear relation between roses and money. (1—2AV/C (A2—1)V/C)(CT)

—-V/C 1 X )’ ®
IIl. RANDOM FIELDS
. . where we defined
Let us now consider a “processd, i.e., a scalar random

field, e.g., in isotropic homogeneous turbuled®]. The 1

variables {,X) define a space-time with only+11 dimen- rwv)= 5 5 . (6)

sions. In relativistic mechanics, this implies that clocks can V(AZ-1)V?C?-2AV/C+1

be unambiguously synchronized in the whole space: here t . )
log scaleT can be univocally defined. One can always con'j'SOte thatC plays no other role than a typical ratigT, and

struct an inertial referential so that physical laws take a simWOuld disappear under a rescalifig>CT,vV—V/C [13].

pler expression; the formalism becomes global instead OMOHDT clearly, as in speed relativitg; dogs not appear in the
local metrics of the log space, see Appendix B.

We thus concentrate on a formalism with resolutidhs The composition law for exponents,

andK'’ which do not depend on scale, which means they are VAV —2AVV'/C

not pertinent anymorgl2]. Instead of¢, we prefer to deal VeV’ = , (7)
only with deterministic numbers, and thus use the connection 1-(A2—-1)VV'/C?

between possible values of a random variable and its mo- ] ] ) )
ments[14]. admits two fixed pointsC.. which play an essential role.

The complete formalism is tedious; see Appendix A. With Starting from an exponei@_<V<C, , one obtains another

constant resolutions, EqgA\1) and(A5) yield simple expres- €xponent in the same interval. The two fixed points then
sions for log variables: characterize the minimum and maximum multifractal expo-

nents of the random field. In Rdf14], we classified all ac-
7 ceptable transformations according to whether these expo-
/_O) nents are zero, finite, or infinite; whether they are equal or
different. They characterize the set of so-called log-infinitely
p p divisible laws, including for example the log-normal law
dIn{(¢,/R) ):(In(¢//R/)(¢//R/) >, (C.==*w). In these preceding papers, we justified the
dp (¢, IR,)P) shape of above equations, and showed that it is unique under
4) sound, minimal postulates.

=

X(T)=

where ¢ is a random positive physical quantity, agg the
same field defined at scalé. X thus depends op and is
defined frompmi, t0 pmax, Characterizing the lower and The aim of the preceding pap€i8,14] was to study the
higher convergent moments of the distribution. pwaries  link between successive moments, but at a fixed stale
between these limiting valueX, takes all the possible values Now our aim is to determine how a measurement at one
of the logarithm of the random fiele . scale is related to another measurement at another scale. This

B. Interest of this formalism
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amounts to finding a renormalization trajectoyT), i.e., The corresponding Euler-Lagrange equation is trivial,
the trajectory of a pointlike particlgl5] and the dynamical
equations which govern it. dP

To obtain a partial differential equation with respect to the aT 0, ©

scale, it could in principle be possible to use an extremal
action principle based on a Lagrangian formulation. This ap

proach, inspired by Castai@6], has three objectivesi) to meaning of course that the expongitioes not depend on

btai it of Vi - h scale. This validates the present formalism on the strictly
obtain a new point of viewsee Sec. V & (i) to have a o gimilar case; however, evidently we do not learn any-

technique at one’s dispogaﬁkee Sec. 1Y and(iii) to stimu- thing as long as we do not specify which physical problem
late new models respecting the scale symmetry, before cofy,, oo studying.

fronting them to the judgment of experiment.

Of course, this latter objective is interesting only when the
physical mechanism under consideration is actually scale in-
variant, in the sense that coupling between scdlesd/”’ If we now introduce an electric fieltkee Sec. Il B, the
does not explicitly depend separately on them, but onlyeneralized impulsion
through the combination”//”’. In this case, a Lagrangian ]
which respects the symmetry might become pertinent. P=dLlIX (10
Boundary conditiongat lower or higher cutoffsevidently
break the symmetry of solutions, but that does not make thendergoes a force obeying the Euler-Lagrange equébidn
method less powerful.

Of course, the actual expression of the Lagrangian de- d (F

B. Electric field

X
pends on the physical problem under consideration. Symme- MC 3 A—(Az—l)E
try arguments alone cannot entirely determine dynamical
equations. But at least they can set strong constraints on th(Wh
shape, as we will now see by turning to the complete formal-

Ism.

) —eE, (11)

ereE is the analog of an electric field; see Appendix D.

Symmetry constraints on the field, or equivalently on
charge distribution, are far less severe than on the tridimen-
sional full electromagnetismil7]. In fact, in such a one-

IV. LAGRANGIAN FORMALISM dimensional space, the magnetic field being necessarily zero,

In fact, analogy with special relativity teaches us a lot. InMaxwell's equations reduce to
a (1+1)-dimensional space-time|t), dynamics cannot be

coupled to space-time curvature. There are not many possi- Ez

bilities left. ox P 1
For a free particle in special relativity, the only possible (12

definition of the scalar action is the integral efads, and JE

the associated Lagrangian & X,v)= —ac/y(v). Here « 9T —J.

must be a positive real number; to ensure correspondence

with the Newtonian dynamics, it is identified toc, where  The permittivity is taken equal to 1. Hepeis the analog of

the masam is a scalar characteristic of the particle. the charge density, andi=(Cp,J) is a bivector with zero
Now, as far as interactions are concerned, the only posshjyergence:

bility left open by symmetry is the existence of an electric
field, but no magnetic field. We explore this minimal version 2,J1=0.
of electromagnetism in Sec. IV A.

Note thatE varies smoothly where is finite. Conversely,
A. Lagrangian formalism for a scale-invariant process for a point charge moving along a trajectoXy=R(T), then
A free particle corresponds here to a fully scale-invariant® =~ €LX—R(T)] is a Dirac peak)=pdR/dT, andE(X,T)

. S . .., IS constant piecewise: it is a step function with a discontinu-
process, i.e., wittkX independent of the scale, associated with P P

P ) N ity along the trajectory of the charge.
the Lagrangian, impulsion, and ener@yppendix O: If eE/MC is given, one can solve E¢l1) to determind”

M C2 as a function of the log scal&, and then obtainX. An
L=——, example relevant to turbulence is provided in our companion
I'(X) paper[18]. To follow this trail further, it is now necessary to
_ propose a model foE, or equivalently for a charge distribu-
AL(X,X) tion. This is outside the scope of the present paper, since this
P=—, 8  task relies on experiments and not simply on symmetries

X considerations. In that respect, it would be interesting to

. study the “inverse problem,” i.e., to determine the charge
E=PX-L, density required to interpret experimental measurements. If
scale-invariance properties are relevant in various fields,
where M is a constant yet unspecified, and we definedsuch phenomenological approach will eventually lead to a
I'(X) " 2=(A%—1)X?/C?— AX/C+1 according to Eq(6). more synthetic theory.



56 ANALOGY BETWEEN SCALE .... . ... 6431

C. Link between different moments Then you assume that you have the free choice of your sys-

In Refs.[9,14], we studied the link between moments of Fem of units and subunits. This we call “exponent relativ-
random fields, at a given scale. In the present paper, we focld-”
on the scale dependence of a given moment. This is de- As we showed in Re{9], this “exponent relativity” lim-
scribed by a Lagragian theory. Working out the dependenclS the possible statistics, which can be classified according
with respect to both scale and order of moments at the sanf@ the exponent€, andC_. They are not necessarily op-
time is feasible, but, in general, complicated. The reason ig0site, since we do not assume that large scales> are
that the trajectory giving the scale dependence of the moequivalent to small scale§— —«; thusC, andC_ can
ment of ordem, say, can be viewed as the trajectory of theindependently be finite or not, so that makes more than just
moment of orden—1, in the “accelerated” frame attached two possible physics.
to the trajectory of the moment of order 1, a frame which is In the present paper, we showed how to construct an
not Minkowskian in general. Such a computation is formu-equation to describe how your random field varies wilith
lated by a Euler-Lagrange equation including terms linked td-€., with the scale. The shape of the equation is compatible

the T dependence of the metrics, with exponent relativity, i.e., with the requirements of scale
invariance. Of course, the ingredients you plug into this
dxe« .. Fe equation, namely, the force source which induces the cascade
EJFFE,LXBX“:V, (13 in scale, or the actual response of your field, need not be

scale invariant themselves, but the relation between them is.

whereF is the force S the proper time, anfi’;, the connec-

tion coefficient of the metrics. In the Newtonian limit, how- B. Summary of the results

ever, these connection terms can be simply described by in- We thus derived a Lagrangian formalism, in a rather
ertial forces. This limit corresponds here to the case of apeculative way, with the following results.

log-normal statistics for the random process. This case, (i) It shows that the analogy between scale symmetry and
relevent to hydrodynamical turbulence, is studied in ourrelativistic mechanics is not only formal, but deeply rooted

companion pape€rl8]. in their postulates and in their thought processes.
(i) It introduces a Lagrangian formalism applicable to
V. CONCLUSION coupled random fields, suggesting the existence of a quantity

conserved along the scales. This provides a framework to
Our three objectives were to propose a method; to derivgeneralize usual dimensional analysis.
predictionsa priori, as well as tools to analyze posteriori (i ) As we show in our companion papgir8], this offers
experimental data; and to suggest an interesting point 04 hope to reach a fully scale-covariant description of turbu-
view. Let us summarize how we have fulfilled these thregience which does not give greater importance to large scales
points. or to small scales, generalizing Kolmogorov’s approach.
(iv) As we show in our companion papgt8], we can
A. Summary of the method solve the Euler-Lagrange equation in a simple but nontrivial
case.
(v) A formalism does not itself make predictions about
e force source; however, it is a tool to describe and ana-
lyze. Given an experimental result, and keeping turbulence
in mind, we know which variable to plot as a function of
%cale, where we should look for a conserved guantity, and
how to prepare a phenomenological model.

In mechanics in a space-time withtIl dimensions, you
assume that all inertial coordinate systems are equivalen{h
This is called “speed relativity.” You add that space and
time are invariant by translation and parity: of course, tha
does not mean that physical objects are invariant by transl
tion (they are not infinitely long but that the equations
which govern them are. This suffices to tell you what is the
composition law for velocities. There is only one free param-
eter, the square? of the invariant velocities+c; this is
positive to satisfy the causality principle. So you have only We are working in the space of the log of the scale and
two possible mechanics: the Galilean and the Lorentzian kithe log of averages of a random field. In this space, a given
netics, respectivelic finite and infinite, and the associate Lagrangian and its associated deterministic Euler-Lagrange
dynamics, respectively Newtonian and Einsteinian. It is noequation define a family of trajectories. Boundary conditions
the symmetry but the experiments which fix the valuecof (e.g., fixing a value at two different points, or a value and
[22]. derivative at one pointselect one trajectory in that family

Since the pioneering work of Notta|&], approaches in- unambiguously.
spired by Einstein have been applied to scale symmetry. A (i) Particular boundary conditions, e.g., rejected at infin-
principle analogous to speed relativity might impose strongty, can select familiar power-law solutions. These are ge-
constraints on the possible statistics of random processes ireric solutions, i.e., they are robust and appear independently
scale-invariant systenjg,9—11. What is our approach? You of the physical mechanism. Of course this appears only in
consider a random field. You want to know its probability theoretical, idealized cases, such as Kolmogorov’s fully de-
distribution, i.e., a relation between its successive momentsieloped turbulenceinfinite Reynolds numberor critical
and you also want to know its scale dependence. You rendgroints in infinite systems.
it dimensionless properly, then take its logarithm for conve- (i) However, for other types of boundary conditions, the
nience, so that you deal with an invariance by translationsame equations which respect the same scale symmetry se-

C. Summary of our ideas
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lect different solutions, which are also generic in the samavhereR , is a reference field, possibly random and/or scale
sense. Among these are, e.g., stretched exponentials, knowlependen{9]. In the analog of the rationalized case, we
to preserve scale symmetfy6,19,18. In such solutions, choose alW; with an identical probability distribution. This
boundary conditions are felt over a certain scale range, leadorresponds to infinitely divisible law[0], with moments
ing to the natural appearance of a crossover scale visible ifollowing:

experimental data or theoretical predictions. In the example

of turbulence, this crossover is the Kolmogorov length, b, \P /| I(WP)/Ink
which separates a lamingétdissipative”) range and an in- <(R_) >:<Wp>n:(7) , (A3)
termittent(“inertial” ) range. In critical phenomena, it is the ’ 0

correlation length which separates correlated and UNcor&yhere( ) denotes an average on realizations. The more gen-
lated scales. _ _ _ eral choice relaxes the requirement(d¥,) being identical,

In our opinion there is a flaw in the classical approaCh’assuming only they are greater than 1. An equation in the
which bases its dimensional analysis only on this crossoveg;me spirit as in Eq$3) and (A1), could then be written for
scale, considered as the only physically pertinent length scalg e random variablg, , but it would not be very convenient
until it grows larger than the system size. We find hard to; use, because of the randomnesssof To deal only with

reconcile this view withi), which does not imply any cross- yeterministic numberg14], we introduce the following
over. Conversely, in our point of view both and(ii) fit into p-dependent quantity:

a single, coherent picture.

Our method makes na priori assumption about the so- dIn{(¢,IRHP) (In(p,IR,)(b,IR,)P)
lution we seek. As long as the underlying physical mecha- a = 5 , (A4)
nism is scale invariant, our method is valid, whether cutoffs P (/IR
are close or far awayi.e., whether data are spanned over a , ,
small or large number of decade3o analyze experimental @nd thus define the log variablesuch as
data, following Pocheau’s recommendatidi@$ we do not 5
look for slopes of straight lines in a log-log plot, but rather [In((, IR, (A5)

look for physical mechanisms which couple the scales. We ax= InK' (/) dp
thus propose to look for a new variable, which we defined in

a formal analogy with an electric field in mechani@r,  whereK' is a number, related to the moments of the distri-
equivalently, the analog of a potential; see RéB]|). This  pution W in a way similar to Eq(A4).
characterizes the amount of curvature of the log-log plot, and

points out the physically relevent length scales of the prob-
lem, including of course the boundary conditions. Thus ex-
periment will teach us whether and when this description is Our choice of system of units and subunits is entirely free,
pertinent. so that, in Eqs(Al) and (A5), K and q can arbitrarily de-
pend, not only on the length scafé but also on the scale of
ACKNOWLEDGMENTS the field ¢ itself. In analogy with general relativity, we pos-
tulate thatphysical laws can always be written under a shape

We are pleased to acknowledge fruitful informal discus-suitable to any system of units and subunithether ratio-
sions with J. Lajzerowicz. This work was supported bynalized or not.

2. Postulate

Groupement de Recherche CNRS-IFREMER ‘ddeique This implies that equations must be correctly written ac-
des Fluides Gephysiques et Astrophysiques.” cording to the tensorial formalisrtsee Appendix B The
space of the two variable°=CT and X'=X is homoge-
APPENDIX A: ANALOGY WITH GENERAL RELATIVITY neous; hereC is an exponent characteristic of the physical
_ system under consideration. In this two-dimensional space,
1. Notations the physically significant quantity is the scalar infinitesimal

In order to generalize the notion of resolution, let usinterval
imagine a continuous slicing of the scale space: at each scale
/ we have a different subunit, a function 4f This function
is continuous; its logarithmic derivative iskn This estab- dratic function of th rdinate differential
lishes an atlas of overlapping maps covering the scale spac%.qua atic 'unction ot the coordinate difierentials.
We now generalizen as a continuous variable, namely, the Thg coefficienty; depen'd c?n the chome of the .unllts and
subunits, and may vary witlX'. Physically, they indicate

real numbelT, the differential of which is: . . .
how two different observers can compare their observations,
1 Ve each one using its own set of units and subunits. The varia-
dT= Wd In(7>. (A1)  tions of theg;;, i.e., their derivative, with respect to the log
g -0 scaleT or to the logX of the measured random field, char-
acterize how rationalized the unit system is.

dS?=g;;dX'dX, (AB)

Similarly, let ¢ be a random positive physical quantity
and ¢, the same field defined at scafe The analogs of the ) )
K, aren independent random field4, : 3. Possible dynamics
Let us mention here the constraints set by the dimension

¢, =R, XWX ...XW,, (A2)  of the space-time on possible dynamics.
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(i) The trivial case where the field is not random but de- APPENDIX C: LAGRANGIAN FORMALISM
terministic allows only a single variable, and no dynamics. FOR A SCALE-INVARIANT PROCESS

The same is true for a random quantity involving only one

scale, described by a single variablethere is of course no A free particle in special relativity_ corresponds here to a
dynamics. fully scale-invariant process, i.e., witk independent of the

(i) A process is a scalar random field, e.g., in isotropicScalé, associated with the impulsion and the energy:

homogeneous turbulen¢&0]. The variables T,X) define a
space-time with #1 dimensions. Dynamics cannot be _ 2
coupled to space-time curvature. It is this “special relativ- aX aX
ity” that we develop throughout the present paper.

(i) With two random fields instead of one, the space-time ) X
(CT,X%,X?) acquires 32 dimensions. An example is a 5=PX—E=FMCZ[1—AE} (CY
temperature passively advected by a turbulent isotropic ve-
locity field [21]. In this case, rudimentary versions of gravi-
tation or electromagnetism are allowed.

(iv) With D=3 different fields, or different components ) 1
of a vector field, the set of labe},i=1, ... D, along with 73‘=MCX‘:FMC( : )
X°=CT, defines an homogeneous space with four dimen- XIC
sions or more, where the tools of general relativity apply.

L OL(XX)

M C?

~|=TMC
T'(X)

X
A—(Az—l)E}

In tensorial formalism, this is written

élc

(C2

APPENDIX B: TENSORIAL FORMALISM

The analogy presented in Table | introduces for the
. = . APPENDIX D: LAGRANGIAN FORMALISM
(CT,X) space a constant metric tengpri.e., all Christoffel WITH AN ELECTRIC FIELD
symbols being identically zerfll7]. The space-time is flat,
and we are in special relativity. The only possible metric, left With a force source, the action, and thli€, must still

invariant by all similarity transformation&), remain a scalar, so that can take the form
S\ g (V)= 1 o
S(V)gS(V)—g, (Bl) £=—W[MC2+GX,A'], (Dl)

is, up to a multiplicative constant, '
where the vectoA'=(d,A). The possible significance of

= B 1 —A _ the scalardM ande and the potential&\ and ® depend on
=(9ij)= —A A2-1]) B2)  the physical quantity we want to describe, egor du in
turbulence 9].

we keep the solution with determinantl. Since the generalized impulsion is the covariant deriva-

This metric g;; reflects the fact that the relation tive of the action, we hav®=MCX +eA/C:
gijR'R'=0, characterizing an intermittent structure, or

equivalentlyQo /=, is invariant under any similarity trans- e
g yQ s y Y + GlAD—(AZ-1)A],

X
. = . _ _ P=FMC{A—(A2—1)—
formation. Its matrixg is diagonalizable and invertible: C

(D2
=, A?=1 A , X
=(g")=~ A 1 E=TMC? 1-A | +e[P—AA].
Note thatg,; andg® vanish in the log-Poisson case. The Euler-Lagrange equation yields a fo(de):
More generally, we define a full bidimensional tensorial _
formalism, also valid in general relativity, i.e., even in a d ) X B
four-dimensional space-time: with the convention that re- dT I'MClA—(A _1)6 =ek, (D3)

peated indices are summed as follows) contravariant
bivectors, e.g., the infinitesimal radius vector whereE is the analog of an electric field:
dX'(T)=[CdT,dX(T)]; (b) covariant bivectors, such

as dX,=g,dX (¢ a scalar product dXdX E=—0x®—Adct®+ AdxA+(A*—1)dcrA. (D4)

=g dX dX*=(CdT)2—2AdX(CdT) +(A2—1)dX? (d) _

thus a scalar infinitesimal intervalS=CdT/T(X), where Let(i‘)JS ”I\‘l%';g th:ﬁztcoz‘sr}‘neg”ts'the antisymmetric  tensor
X=_dX(_T)/dT; (e) a scalar derivativel/dS; (f) a cova_riar_1t Fi=dA—dA , we have the relatiorE=F,,, and Eq.
derivative 9;=d/X"; (g) a scalar second-order derivative, (p3) appears as the first component of the vectorial equation
the d'Alembertian ,6'=(1—A2)d2rro— 2A 921 x— Oz

and (h) a derived bi-vectoX'=dX/dS=[T'(X),T(X)X/C] CZdei

o M A op ek
obeyingX;X'=1. gs — eFuX" ©S
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(i) Whenever the Lagrangian is scale independent, i.e., as (iii) This formalism has the symmetries of electromagne-
long asT does not appear explicitly, the ener§iys equal to  tism in a one-dimensional spac@) no magnetic field(b)
the HamiltonianH(P,T)=PX— £ and the equation of mo- invariance by parity{c) general covariance under similarity
tion reduces to transformationg9] (note, e.g., thaE?=|F| is an invariant,
i.e., transforms as a scalar, and thus so dégsand (d)
electromagnetic gauge invariance, which leaves the choice,

X —0, A= i
TMC2 1- A = |+e[®— AA]=const. (D6) e.gi,_tb 0, A=0 or the more symmetric Lorentz gauge
C diA'=0.
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