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Abstract. According to the Titius-Bode law, the planetary dis-
tances to the sun follow a geometric progression. We review the
major interpretations and explanations of the law. We show that
most derivations of Titius-Bode law are implicitely based on the
assumption of both rotational and scale invariance. In absence of
any radial length scale, linear instabilities cause periodic pertur-
bations in the variable z = In(r/ro). Since maxima equidistant
in  obey a geometric progression in the variable r, Titius-Bode
type of laws are natural outcome of the linear regime of systems
in which both symmetries are present; we discuss possible non-
linear corrections to the law. Thus, if Titius-Bode law is real,
it is probably only a consequence of the scale invariance of the
disk which gave rise to the planets.

Key words: planets and satellites: general — solar system: for-
mation — hydrodynamics — instabilities

1. Introduction
1.1. Historical overview

Ever since Plato and until the recognition of the existence of
chaos, the search for order and regularity in the universe has in-
fluenced many a physical theory or observation. The explanation
of the distribution of planetary distances is a good illustration of
this influence. In the greek antiquity, the first recorded attempts
of setting a regularity in the sequence of ratios of successive
planet orbit sizes seem to begin with Plutarque (~ 50 — 120
AD), who favored a pythagorean sequence of powers of 3
(Neugebauer 1975). Within a geocentric cosmology, from his
~ 124—141 AD observations, Ptolemy (146) presents estimated
ratios of successive planetary distances reinterpreted around 200
AD by Cassius Dio, linked with regular musical intervals. Hip-
polytus (230) claims that it is an heresy to imagine there could
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be no order in planet orbit intervals; he critically examines data
attributed to Archimedes (~ 286 — 212 BC) to evidence alter-
nating powers of 2 and 3, a platonician numerology Macrobius
(400) also supports.

In modern times, the first theory within a heliocentric cos-
mology comes with Kepler. In his Mysterium Cosmograph-
icum (1596), he assumed a construction where each planet orbit
was a circle circumscribed to one of the five regular polyhedra:
cube, tetra-, dodeca-, icosa- and octahedron (Crombie 1952).
He then worked with Tycho Brahe to benefit from his cautious
astronomical measurements, and was convinced that Mars’ or-
bit is actually an ellipse; but even after he published his laws
(Kepler 1609, 1619), he issued a late republication of the Mys-
terium sticking to the regular solids and spheres construction.

The search for an “order” in the solar system was revived
in 1766 by Titius, who noticed that the known planet orbits
(Mercury to Saturn) would follow a geometric progression pro-
vided a “missing” planet was inserted between Mars and Jupiter.
Bode reformulated this observation in 1772 into the so called
“Titius-Bode law”, which Wurm expressed in 1787 under its
more modern mathematical form:

n=0.4+03 x 27, (1)

where the distance r,, of the n** planet to the sun is expressed
in astronomical units. The integer should take values n = —oo
for Mercury, n = 0 for Venus, n = 1 for the Earth, and so
forth. At that time, amidst a growing polemic, supporters of
the “law” had such a strong belief that they searched for new
planets at locations predicted by the progression. The discovery
of Uranus in 1781 and of the first asteroid Ceres in 1801, both at
locations close to prediction, reinforced their confidence into the
“law”. Howeyver, after the discovery of Pallas, a second asteroid,
in 1802, Neptune in 1846 and Pluto in 1930 at locations not
predicted by the law, its limitations became evident (Jaki 1972).
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1.2. Present status

Many modern researches attempted at modifying the Titius-
Bode law in order to better fit the observed planetary distances
using only positive integer values of 7. The best fits finally seem
to be based on geometric progressions, of the form:

T =oK™, @

where 7 is a normalizing distance and K a constant: for the
solar system K = 1.7, n = 1 for Mercury, n = 2 for Venus,
and so forth. Note that ¢ has no special significance, and was
chosen only so that r; corresponds to the orbit of Mercury. A
shift of 7y by any factor K™ (m being any integer) just results
in the shift in the numbering of planets. Similar laws were also
searched in the orbits of satellites of the four major planets: K is
respectively 1.6, 1.5 and 1.4 for the Jupiter, Saturn and Uranus
system (see e.g. Neuhéduser & Feitzinger 1986). Such numbers
should however not be taken too seriously, in view of the large
degree of arbitrariness involved in derivations of “laws” of the
type of Eq. (2). Itis indeed customary to add one or two missing
planets in the progression when needed, or to remove those pre-
senting suspicious characteristics (eccentricity, inclination,...)
which could be interpreted as evidences for capture or collision
events. The geometric laws should therefore rather be viewed as
a rough description of planetary and satellite distances, rather
than “exact” laws (see Table 1 and Fig. 1).

Nottale (1992) presents an interesting Titius-Bode like law
as consequence of long term behavior of chaotic systems. He
obtains a quantification of possible orbits for planets, spaced
as r, = ron(n + 1). However, the agreement of this law with
observations is guaranteed by special assumptions such as the
division of the solar system in two subsystems (inner and outer),
with a different normalizing radius ro.

1.3. Polemics

The general attitude towards the Titius-Bode laws (2) is twofold:
skepticism or faith. Skeptic people argue that the “laws” are pure
numerical coincidences and were produced by chance alone. For
example, Lecar (1973) showed that approximate Titius-Bode
laws can be generated by a sequence of random numbers sub-
ject to an excluded volume constraint, where adjacent planets
cannot be “too close to each other”. Faithful people use the fact
that Titius-Bode laws are observed in the solar system and in
satellite systems of giant planets to justify its possible physical
significance. The law is then used as a constraint of theories of
solar and satellite system formation and explanations are sought.
A difficulty is to find a mechanism working in both solar and
planetary systems, which are a priori rather different in nature
(temperature, density, etc..). However, this difficulty does not
seem to be a major limitation to the imagination of the theoreti-
cians since there are over 15 explanations to the various forms
of the Titius-Bode law.

In our opinion, this facility to produce a Titius-Bode law is
even more puzzling than the reality of the law itself. It suggests
there is a “hidden” order behind all the explanations and that
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most of them are in fact based on the same assumption. The pur-
pose of this paper is to show that this basic assumption consists
in both rotational and scale invariance. These two symmetries
alone are sufficient to produce geometrical progressions in a
suitably chosen variable.

The outline of our argumentation is as follow. In Sect. 2, we
review some of the major theories of the Titius-Bode law and
show that most of them are based on a consequence of the scale
and rotational invariance, namely that the only characteristic
length in the problem is the radial distance to the rotation axis. In
Sect. 3, we use simple symmetry considerations to show qualita-
tively that in any scale invariant rotating system, the Titius-Bode
law naturally arises in a linear regime; non-linear corrections to
the law are discussed. Our conclusion follows in Sect. 4. In a
companion paper (Dubrulle & Graner 1993, hereafter Paper II),
we introduce an elegant method to solve scale-invariant prob-
lems and cook up an infinite number of Titius-Bode laws; we
explicitly derive the simplest example, in a flat rotating gaseous
disk.

2. Theories of Titius-Bode laws
2.1. Dynamical vs kinematical theories

Explanations to the Titius-Bode law can be divided in two cat-
egories. We refer as “dynamical” to the theories of the first
type, which assume that the present law traces back to a period
anterior or contemporary to planet formation; most of them de-
scribe instabilities occurring in the primordial protoplanetary
disk, thus set constraints on its physical characteristics. Theo-
ries of the second category, called “kinematical”, assume that
the law physically originates from orbital interactions posterior
to planet formation.

The pros and cons of each category have been discussed by
Nieto (1972). He argues that observed deviations from the exact
geometric law could be interpreted as the natural outcome of
orbital evolution after planet formation. Those deviations have
been quantified by Blagg (1913) and Richardson (1945) via the
introduction of a periodic function in the original exponential
law:

rn = ALY [B + f(a+npB)]. 3)

Here o and 3 are real constants, A and B are positive constants;
f is a 27 periodic function, ranging between 0 and 1. All param-
eters depend on the satellite system under consideration (Solar
System or giant planets). According to Nieto, f could be the re-
sult of the tendency to commensurabilities between the orbits.
Such interpretation is somewhat favored by numerical simu-
lations of Conway & Elsner (1988), which show that systems
placed initially in Titius-Bode-like laws (increasing planetary
distances) are very stable.

“Kinematical” theories sometimes contradict each other; for
example, Molchanov (1968) explains the Titius-Bode law by
resonances between the frequencies of the nine planets, while
Souriau (1989) argues that the law is a consequence of the plan-
ets being as far of resonances as possible, to avoid catastrophic
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ejection events. Note however that kinematical theories based
on resonances are probably all ruled out by the work of Hénon
(1969), who showed that for any set of revolution periods, pro-
vided they are randomly selected using an “excluded volume”
procedure, one can find resonances relations as good as those
observed in the Solar System.

We are interested in explaining explanations of the Titius-
Bode law, rather than the law itself. As it turns out, our discus-
sion mainly applies to dynamical theories; we therefore focus on
them, and do not comment further the relevance of one category
or the other. :

2.2. Brief overview of dynamical theories

A complete review of dynamical theories for the Titius-Bode
law is given in Nieto (1972). They mainly assume one of four
physical mechanisms to take place in the protoplanetary disk:
planetesimal accretion; competition between gravity and elec-
tromagnetic forces; self-gravitational instability; and hydrody-
namic or turbulent instabilities in the protoplanetary disk.

Accretion produces a Titius-Bode law via the “feeding zone”
effect (Vityazev et al. 1977): during its rotation around the cen-
tral object, a large planetesimal at a mean distance r sweeps an
annular area of radial extent 2er, where e is the eccentricity of
the orbit. The non-overlapping of two adjacent “feeding zones”,
corresponding to the n** and the (n + 1)** planetesimal, then
imposes:

Tn(l+en) = Tna(1 — enyv1), 4

where r,, and e,, are respectively the semi major axis and the
eccentricity of the nt" planetesimal. The further assumption
that all large planetesimals were formed with roughly the same
eccentricity < e > leads to a Titius-Bode law with a parameter:

+<e>

I-<e>’ ®)

Kfeed =

The electromagnetic mechanism mainly relies on the dy-
namics of charged particles under mutual electrostatic influence
in the solar gravitation field (Berlage 1930). Particles thus only
experience 1/r2 force fields.

The gravitational instability mechanism, explicitly tak-
ing into account the cylindrical (rotational) symmetry of the
disk, has been especially fashionable among Titius-Bode law
builders. Prentice (1977) found a Titius-Bode law for the distri-
bution of density maxima provided the collapse is homologous,
i.e. self-similar; he was especially interested in the influence of
turbulent convection.

In contrast, Polyachenko & Fridman (1972) showed that
even in a cold disk, the instability leads to a Titius-Bode law
provided that the surface density o(r) = f p(r, z)dz varies with
the radial distance as r~2. When they realized that the initial
protoplanetary dust sub-disk was probably not massive enough
for their gravitational instability to take place, they turned to
dissipative instabilities (Gor’kavyi et al. 1990). Again, a Titius-
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Bode law was found provided the height H of the disk is directly
proportional to 7 and the turbulent viscosity scales like:

am B\ /2
Vg o ) - cs(r)<GMC) ) (6)

where €)(r) is the Keplerian frequency, M¢ the mass of the
central object (the sun or the giant planet), and c¢; is the sound
velocity. More recently, the dissipative instability scenario was
reinvestigated by Willerding (1992), leading to rings following
the Titius-Bode law; an underlying assumption is the constancy
(r independence) of a Reynolds-type non-dimensional number:

R= = cte. @)

o and v, are the surface density and turbulent viscosity, and s
the growth rate of the instability.

Other theories were based on disk structure under fully de-
veloped turbulence, rather than linear instability. For instance,
von Weisécker (1948), then Kuiper (1951) showed that turbu-
lence in the disk would lead to the creation of large vortices,
organized in concentric circles. If the scale of the turbulence
(the scale of the vortices) varies linearly with the radial dis-
tance, the frontier between the concentric vortex rings follows
a Titius-Bode law.

2.3. Comments

Within such a tremendous diversity, these models share a com-
mon methodology. Each of them assumes a physical phe-
nomenon to be the origin of planet formation. Then, coming to
quantitative predictions, each model needs an hypothesis on the
of course unknown physical properties of the primordial system.
The most natural assumption, as long as we are totally ignorant,
avoids introducing unnecessary parameters. Thus the first re-
flex is to propose a model with no supplementary length scale,
other than the radial length scale r itself. Only Prentice seems
to explicitly mention his hypothesis, and apparently no author
points out its relevance. Such hypotheses include: homologous
collapse, constant eccentricity, disk height H or vortex size o< 7,
=2 force fields, v; < 2r3/2, o < r72, or s/ov; = cte.

This method seems reasonable; it is very popular, but si-
multaneously not innocent, for a very precise reason. Indeed,
it never fails to produce a geometric progression in orbit sizes,
even if not desired, and whatever the underlying physical model.
For a “faithful” physicist, this prediction of a Titius-Bode law
evidences the validity of the model and even offers quantita-
tive constraints. We show in the next section why we believe
that, in all the models we review, Titius-Bode laws arise from a
same symmetry hidden in the equations, and not from physical
phenomena they tend to modelize.

3. Rotating scale invariant systems and Titius-Bode laws
3.1. On symmetries

We want to point out that Titius-Bode laws arise in a whole class
of physical problems; sufficient properties, by no mean neces-
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sary, are being (P1) invariant by rotation around an axis Oz,
(P2) invariant by scale dilatation in the plane perpendicular to
z. (P1) and (P2) set strong constraints along the vertical direc-
tion. There is no possible length scale along z other than r. The
system is toroidal, with |z| scaling like r; at extreme limits, it is
either a flat disk, with all physical quantities vanishing outside
the plane z = 0; or cylindrical, with a translational symmetry
along z.

A particular case relevant to planetology, the flat disk, is con-
sidered in Paper IT. We do not consider here problems which are
also invariant under any in-plane translation, which fall under
the conformal invariance analysis.

3.2. Symmetry-breaking

Two transformations can be defined by their action on the co-
ordinates, and on vector or scalar quantities. The rotation of
angle @ around the z axis leaves any scalar quantity invariant.
It rotates the vector quantities by an angle 8 along z and does
not affect their modulus. The scale transformation stretches the
radial coordinate r by a factor A, and any vector or scalar quan-
tity g by a factor A7, where + is an exponent depending on the
set of equations and on the quantity. For example, in a rotating
self-gravitating fluid, -y is respectively 3/2, —3 or —1/2 for the
time coordinate, the density or the velocity. Paper II presents
an explicit definition and use of scale transformations. We con-
sider a system described by a set of equations. If g(r, 0, 2, t)
is a physical field solution of the set of equations (e.g. den-
sity, vectorial velocity), then the equations are also satisfied by
TgT~Y(r,0,z,t), where T is either a rotation Ry of arbitrary
angle around the rotation axis, or a scale transformation Sy.
The notation T~ stands for the inverse of T"; Ry '=R_pand
SXI = Sl /A-

For scalar quantities, the particular “scale invariant” solu-
tions simply obey g(r)/rY = cst, while "rotational invariant”
solutions are f-independent. Generally speaking, g and its sym-
metric T'g7~! need not be the same, i.e. the individual solutions
themselves need not be symmetric; on the other hand, the set
of solutions itself must be globally invariant by any rotation or
scale transformation.

Note that a single parameter can control the bifurcation,
or spontaneous symmetry-breaking, from the particular case to
the general one. Depending on the non-linearities (more pre-
cisely, on the sign of the lowest non-linear term) of the prob-
lem, such bifurcation is of “first-order” if the unstable solutions
Jjump abruptly from the symmetrical one; and of “second-order”
if the symmetry-breaking is a smoothly continuous function of
the control parameter. For instance, in a flat self-gravitating disk,
the ratio Mp/Mc of the disk mass to the mass of the central
object is clearly such a control parameter: when Mp /M¢ < 1,
the disk is keplerian and stable; when Mp /M > 1, the disk
is gravitationally unstable; the threshold in Mp/M¢ is of the
order of unity.

To simplify the demonstration we consider in this article
only the subclass of the problems which are also (P3) time in-
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dependent. A “solution” thus refers here to equilibrium states.
In Paper II we relax this unessential constraint.

We define a linear problem (P4) as a problem in which all
radial and azimuthal modes decouple. An important case of
problem obeying (P4) is a second-order bifurcation just above
the threshold value of the control parameter: (P4) simplifies the
linear stability analysis around the equilibrium scale-invariant
solution, otherwise tedious and completely computable only in
limited cases (Yabushita 1966, 1969).

To decompose the azimuthal modes of a given physical
quantity g it is natural to use the Fourier serie decomposition
on the basis of the modes exp [i(m8 + 0,,)], where m is integer
and 6, real:

9(r,0) = Re(Xmam(r) exp [i(mf + 0,,)]), ®

where the symbol Re stands for real part. To perform the anal-
ogous decomposition for radial symmetry-breaking, we show
hereafter why the most natural basis consists in the radial modes
exp [ik In(r /)] where 19 and k are real constants; so that
Titius-Bode laws arise in any problem obeying (P1-2) as well
as the less essential (P3-4). This simply results from the rewrit-
ing of dynamical equations using the scale invariant variable
x = In(r/ro), as we illustrate in Paper II. The following discus-
sion emphasizes the generality of this treatment and its limita-
tions.

3.3. Generic equation

Analytical functions of g which are invariant by rotation develop
as series of the rotational invariant terms (a,, )P.(@,,)? where the
bar denotes the complex conjugate, (a.,)? denotes the pt* power
of the m*" azimuthal mode, and mp = ngq. Analogously, analyt-
ical functions of g which are invariant by scale transformations
develop over the various scale invariant terms such as g/r7 or
7(0r9)/g, as well as terms built with functions of these, e.g.
r1=78,.g, or higher derivatives, e.g. 7%(9,29)/g.

In a linear problem (P4), a single mode m is not coupled
to any other mode and the quantities invariant by both rotation
and scale dilatation are 7(8,am)/Am, Ambm /Y, and so on.
We call “generic” equations linking such invariants. One basic
result of symmetric systems theory is that any physical equation
describing an invariant problem can be written under a generic
form (Giickenheimer & Holmes 1983). Then, as we now show,
one equation linking g and 0,.¢ is a sufficient (and not necessary)
condition for a,, to obey a Titius-Bode type of law.

Indeed, such an equation links a,, and O,a,,. Its generic
form is:

hm (amdm/"'z’ya T(aram)/afm> =0, )

where h, is a function characteristic of the physical problem,
implicitly linking these two quantities. If h,,, is not singular, it
can be inverted, and the second invariant written as a function
of the first:

2
Or(am) = aTmHm<!am| )a

& (10)
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where H,, is a regular function. With the new variables:

a
bm = T_ZL’
z = Inr/rg, an

where 7 is a normalizing radius, Eq. (10) takes a simpler form
which evidences the scale-invariance:
6a:b'm = b'me(lbm|2)- (12)
where the new function is simply G,,, = H,, —~. Equation (12),
the simplest generic equation characterizing scale and rotational
invariant problems, clearly indicates that the new Fourier coef-
ficient b,,, only depends on = = Inr/ro. Therefore, the initial
physical quantity can be written under the form:

g(r, 0) = r"_ij(a;,@), (13)

where the tilde denotes the scale-invariant equivalent function.
Note that Eq. (12) is formally analogous to the generic equation
governing bifurcation in rotating systems (see e.g. Knobloch
1993), with only our z dependence replacing his time depen-
dence.

As long as the amplitude of the perturbation is small, the
function G, can be developed in Taylor serie:
Gon(lbm[?) = (u+ ik) + (1 + i) b * + ... 14
i, k, 1 and k are real coefficients. Using (14) and introducing
the amplitude By, and phase ¥, of b, = By, exp[itn, ()], Eq.
(12) writes:

8:Bm = puBp +nB2, + O(B3),
Ophm = k+rKB2 + O(BL). 15)
The generic set of Egs. (15) governs the phase and amplitude of
any quantity g in a problem which satisfies (P1) to (P4): modes
decoupling, time independence. The specificity of a given prob-
lem enters in the value of the constants y, k, 7 and x.

3.4. Linear laws

The linear regime of Eq. (15) is easy to study. Neglecting non-
linear corrections, B, and 9, can be found by straightforward
integration. They are:

. N
B,, = Boexpluz] =Bo(—> )
To
Ym = kz = kIn[—]. (16)
To
Thus b,,, writes:
r\* .
bm = By (r_) etk n/r0) = By expl[(u + ik)x]. a7
0

From (17), it follows that the equal phase cylinders for a given
mode m are spaced according to a Titius-Bode law. If ,, and
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Fig. 1. Actual positions of planets in the solar system expressed in
Astronomical Units (squares) and best fit by a linear Titius-Bode law
(continuous line). See Table 1 for exact figures

Tn+1 are the radial location of two consecutive cylinders, they
obey the relation (2):

ZTp +2m/k = xo + 207 [k,
rnexpl2m/k] = roK™.

Tn+l

Tn+l (18)
where K = exp[2n/k] is a constant, so that this geometric
progression arises from the simple generic Eq. (9) we started
with.

However, such law is lurking in any rotating scale invariant
system. Therefore, if one studies a scale invariant system and
assumes that planets are forming at the maxima (or minima) of
one of the dynamical variable (the most popular being the den-
sity), he will automatically find a close Titius-Bode law within
alinear development. The constant K of the law depends on the
physics involved in the problem. For instance, in self-gravitating
disk models, it mostly depends on the ratio between the mass
of the central object, M, and the disk mass Mp (see Paper
II for an illustration). An example of linear Titius-Bode law is
displayed in Fig. 1. It corresponds to the Eq. (2) for the solar
system, i.e. with rp = 0.21 A.U. and k = 11.8.

3.5. Non-linear corrections

The non-linear corrections to (18) appear through the straight-
forward integration of the set of Eq. (15) up to the first non-linear
terms, yielding:

2p
B2 = B2 (r/ro)
™ 7 70 1+ €B? — Ble(r/roy+

Ym

kln[r/ro] — %7 In|1+ Ble— Bge(r/ro)z"], (19)

where € = 77/ u. The large-r radial dependence of the amplitude
and phase therefore depends on the sign of €. If ¢ > 0, both
amplitude and phase diverge at r = ro[1 + 1/(eB3)]"/®"; or,
more physically, higher non-linear terms make this unphysical
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Fig. 2. Non-linear corrections to the linear Titius-Bode law (continuous

line). According to the magnitude of «, the non-linear law diverges

(dashed dot line) or saturates at another amplitude (dashed line)

Table 1. Position and mass of solar system objects: rr is the mean
distance, in A.U; M, is the mass, in units of the Earth mass. The
label obs, T'Bi;n, and T B,,; correspond respectively to the observed
distance, the best fit with a linear Titius-Bode law, and a hand-made
non-linear fit. Astl and Ast2 refer to asteroid belts 1 and 2

Name Tr, [ 0bs M, Tn/TBiin  Tn/TBni
Mercury 0.39 0.0553 0.36 0.36
Venus 0.72 0.8149 0.63 0.63
Earth 1 1 1.09 1.09
Mars 1.52 0.1074 1.88 1.88
Astl 29 0.001 3.25 2.98
Ast2 3.9 433
Jupiter 5.2 317.938 5.63 6.28
Saturn 9.54 95.181 9.73 9.01
Chiron 13.70 ? 13.18
Uranus 19.18 14.531 16.85 19.09
Neptune  30.10 17.135 29.15 27.65
Pluto 39.5 0.0022 50.43 40.05

divergence disappear. If ¢ < 0, the amplitude saturates at the
large-r limit:

B — le| 772, (20)
while the phase has the asymptotic form:
Ym — (k — ke)In[r /ro]. (21)

As a consequence, the non-linearities modify the Titius-
Bode law in the spacing of surfaces of equal phase. In the case
€ < 0 where the non-linearities generate a saturation, the large-
r Titius-Bode law is characterized by a constant different than
at small r, namely k — e (Fig. 2). Note that if k < —kle| ™!,
1, vanishes at an intermediate r value, void of oscillations, and
changes sign at large r.

Planet formation is fundamentally a non-linear phe-
nomenon, since it corresponds to a saturation (in the density
amplitude). The present symmetry considerations offer no ar-
guments in the debate whether planet positions were determined
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Fig. 3. Hand-made fit by a non-linear Titius-Bode law (continuous line)
compared with observed positions in the total solar system (squares),
which includes Chiron and two asteroid belts. See text for obtention of
the fit and Table 1 for exact figures

by linear or non-linear instabilities. For the Titius-Bode hunter,
however, nonlinear laws introduce additional parameters; as an
illustration, we show in Fig. 3 a flexible fit to the positions of
the “total solar system” (see Table 1), including exotic objects
such as Chiron. This fit even takes into account 2 asteroid belts
between Mars and Jupiter, and is nothing more than numerol-
ogy: since this list of the planets is of course arbitrary, we attach
no physical significance to it.

The fitin Fig. 3 was obtained by recursively solving ¥y (1) =
2mrn for various n. The phase function )y is:
Yo(r) = aln[r/ro] + bIn[1 + cr?#] (22)
where the constant a, b, rg, c and 1 were obtained via an half-an-
hour-juggling with numbers. They are ¢ = 27/ In[1.7] = 11.8,
b=0.55 1 =021, c = 107* and p = 4. The phase (22)
corresponds to the amplitude:

r#

Bo(’l') = B()m .

(23)
If we assume planets form at positions related to local surface
density maxima, By is related to o, the surface density, via:

o(r) = r° Bo(r) explitho(r)] (24

with s = —2 in a scale-invariant system. The surface density
(24) can be compared with the “actual” surface density of the
solar system protoplanetary disk, of course unknown. Lacking
reliable estimations, we arbitrarily plot in Fig. 4 a quantity o(ry,)
varying like:

My

O(Tn) O( 27r7‘n(rn - rn—-l)’

(25)
in units of Earth mass/(A.U.)?, where M,, is the mass of the nt"

planet, r,, is its radial distance. The free normalizing constant
By of Eq. (23) has been chosen to get the best correspondence.
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Fig. 4. Comparison of the surface density given by the non-linear
Titius-Bode law (continuous line) and the actual surface density in
the solar system (dashed line), computed from Table 1 and Eq. (25)

Obviously, the two surface densities differ sensibly, which is
another indication of the model’s lack of physical significance.
Titius-Bode laws supporters could of course present various
corrections; a classical argument is that the large dip in the solar
system surface density is due to the weak mass of Mars and the
asteroid belt, which are both under tidal influence of Jupiter,
i.e. that the original surface density might therefore have been
larger at their location.

4. Conclusion

‘We have shown the following results. (i) In any two-dimensional
systems characterized by both rotational and scale invariance,
the most natural Fourier basis vectors are exp[ik In(r/r)]. (ii)
Since gravitation respects both invariances, in a self-gravitating
disk with no vertical length scale, extrema of density pertur-
bations tend to follow a geometric progression of the form
T, = oK ™. (iii) If the Titius-Bode laws of the solar system are
more than pure numerological speculations, they may be simply
interpreted as the signature of the scale and rotational invariance
of the protoplanetary system. (iv) Neither symmetry consider-
ations, nor observations of the solar system, can presently dis-
criminate between linear and non-linear Titius-Bode laws.

We conclude that, if a model of planet or satellite formation

leads to such geometric law for orbit diameters, this does not

constitute a diagnostic of the model’s validity, but only reflects
its implicit scale and rotational invariance.
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