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Abstract. Discrete rearranging patterns include cellular patterns, for instance liquid foams, biological
tissues, grains in polycrystals; assemblies of particles such as beads, granular materials, colloids, molecules,
atoms; and interconnected networks. Such a pattern can be described as a list of links between neighbouring
sites. Performing statistics on the links between neighbouring sites yields average quantities (hereafter
“tools”) as the result of direct measurements on images. These descriptive tools are flexible and suitable
for various problems where quantitative measurements are required, whether in two or in three dimensions.
Here, we present a coherent set of robust tools, in three steps. First, we revisit the definitions of three
existing tools based on the texture matrix. Second, thanks to their more general definition, we embed these
three tools in a self-consistent formalism, which includes three additional ones. Third, we show that the
six tools together provide a direct correspondence between a small scale, where they quantify the discrete
pattern’s local distortion and rearrangements, and a large scale, where they help describe a material as a
continuous medium. This enables to formulate elastic, plastic, fluid behaviours in a common, self-consistent
modelling using continuous mechanics. Experiments, simulations and models can be expressed in the same
language and directly compared. As an example, a companion paper (P. Marmottant, C. Raufaste, and F.
Graner, this issue, 25 (2008) DOI 10.1140/epje/i2007-10300-7) provides an application to foam plasticity.

PACS. 62.20.D- Elasticity – 62.20.F- Deformation and plasticity – 83.50.-v Deformation and flow

1 Introduction

Cellular patterns include: liquid foams or emulsions
(Fig. 1); crystalline grains in polycrystals; or biological
tissues (Fig. 2). Assemblies of particles (Fig. 3) include
collections of beads, molecules, or atoms; granular or col-
loidal materials; sets of tracers dispersed in a material,
such as fluorescent probes or passively carried particles.
Despite their tremendous diversity of sizes and physical
properties, all these patterns have a common point: they
are made of a large number of well-identified individual
objects. We call them discrete patterns, where the word
“discrete” here means the opposite of “continuous”. Other
discrete patterns include interconnected networks, of e.g.
springs, polymers, biological macromolecules, fibers, or
telecommunication lines.

We define the pattern as rearranging if the mutual
arrangement of the individual objects can change. This is
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the case if they can move past each other, for instance due
to mechanical strain (Figs. 1 or 2a), spontaneous motility
(Fig. 2b), or thermal fluctuations (Fig. 3). This is also the
case if the number of individual objects can change, for
instance due to cell division or death (Fig. 2b), coalescence
or nucleation of bubbles, shrinkage during coarsening of
polycrystals or foams.

Stimulated by the various imaging techniques, ref. [1]
reviews many tools available to describe and quantita-
tively characterise a pattern (that is, a single image). An-
other tool is the texture: it appears in various contexts, in-
cluding the order parameters of nematics, the microstruc-
ture of polymers, or the fabric of grains; and has been used
to describe mechanical strains by Aubouy et al. (see [2]
and references therein). It describes statistically how the
individual objects are arranged with respect to each other.
With a few simple measurements performed directly from
an image, it extracts quantitative information relevant to
the size and anisotropy of the pattern. Since it is based on
statistics, it is particularly useful for disordered patterns.
Here, we present a coherent set of robust tools (listed in
Tab. 1), with a triple goal.

First, we revisit existing definitions of the texture M,
as well as the statistical strain U [2] and the rearrange-
ments T [3] based on it. In fact, cellular patterns are better
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Fig. 1. Liquid foams. (a) Heterogeneous flow: from left to
right, around an obstacle [4]; liquid fraction ∼ 10−4, image
width: 15 cm. (b) Homogeneous shear: in a rectangular box,
deformed at constant area [5]; liquid fraction ∼ 5 · 10−2, image
width: 18 cm, courtesy C. Quilliet (Univ. Grenoble).

characterised using cell centers than using their vertices.
This remark enabled reference [3] to define a preliminary
version of T. Here, we show that it also yields a more
general definition of the texture, valid for all patterns. In
addition, since a cell center is measured as an average
over all pixels in a cell (while a vertex is a single pixel),
measurements in experiments or simulations are more ro-
bust. The companion paper [6] shows that displacements
of cell centers (but not of cell vertices) are close to affine
displacements. In order to make this paper self-contained,
we recall and hopefully clarify the definitions of M and U.
We also present a more general definition of T and derive
explicitly its prefactor.

Second, thanks to their more general definition, we em-
bed these three tools in a self-consistent formalism, which
includes three additional ones: B, V and P. From two
successive images in a movie, we extract information re-
garding the magnitude and direction of strain rate and
rearrangements.

Third, we show that the six tools together provide a
direct correspondence between a small scale, where M,
B and T quantify the discrete pattern’s local distortion
and rearrangements; and a large scale, where U, V and P

help describe a material as a continuous medium without
any details related with the discrete scale. This enables to
formulate elastic, plastic, fluid behaviours in a common,
self-consistent modelling using continuous mechanics even
for a discrete material. Experiments, simulations and the-
ories can be expressed in the same language to be directly
compared.

(a)

(b)

Fig. 2. Other cellular patterns. (a) Grains in a polycrystal of
ice which rearranged during ice accumulation [7], image width:
10 cm, courtesy J. Weiss (Univ. Grenoble). (b) Tissue of cells
rearranging during the formation of a fruit fly (Drosophila)
embryo: this thorax epithelium is labeled by the expression of
the cell-cell adhesion molecule E-Cadherin-GFP; image width:
160 µm, courtesy Y. Belläıche (Inst. Curie).

The only requirement is that the image should be of
sufficient quality to extract the positions of the centers
of each individual object (cell or particle); as well as the
list of neighbour pairs (which objects are neighbours).
All tools here are either static or kinematic, and rely on
the image only; that is, they are independent of dynam-
ics (stresses, masses and forces). They apply to discrete
patterns regardless of the size of their individual objects,
which can range from nanometers to meters or more. They
regard simulations as well as experiments, and should en-
able quantitative comparison between them. They apply
whatever the pattern’s disorder is.

Our equations are valid in any dimensions. For clarity,
we write them in 3D, and show that is is straightforward
to rewrite them in 2D, see Section 2.2.3. We specifically
choose to illustrate this paper with 2D images (Figs. 1-3),
which are simpler and more common that 3D data.

More precisely, we illustrate each definition on the ex-
ample of a foam flow (Fig. 1a) [4], which is both our
original motivation and the most suitable example. Ni-
trogen is blown into water with commercial dishwashing
liquid. Bubbles enter a channel, of length 1m (only partly
visible in the picture), width 10 cm, and thickness 3.5mm:
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(a)

(b)

Fig. 3. Assemblies of particles. (a) Beads repelling each other;
they are placed on a vibrating loudspeaker, with an effect
shown to be equivalent to thermal fluctuations [8]; image size:
11.6 cm, courtesy G. Coupier (Univ. Grenoble) [9]. (b) Simula-
tion of amorphous systems of atoms interacting via Lennard-
Jones potential [10]: circles indicate each particle’s effective
radius (here with a 20% dispersity), tangent circles correspond
to vanishing interaction force; image size: arbitrary, courtesy
A. Tanguy (Univ. Lyon).

a monolayer of bubbles forms (area Abubble = 16.0mm2),
sandwiched between two glass plates (quasi-2D foam, liq-
uid fraction less than a percent). It steadily flows from left
to right without vertical component (true 2D flow) until it
reaches the free end of the channel. Coalescence and age-
ing are below detection level. A 3 cm diameter obstacle is
inserted into the foam channel. The foam is forced to flow
around it, resulting in a spatially heterogeneous velocity
field. Different regions simultaneously display different ve-
locity gradients, internal strains, and rearrangement rates,
and allow to sample simultaneously many different condi-
tions. Bubbles naturally act as tracers of all relevant quan-
tities; and on the other hand the foam’s overall behaviour
appears continuous. The total strain rate is partly used to
deform bubbles and partly to make them move past each
other; the companion paper [6] studies how it is shared
between both contributions.

Sections 2.1 and 2.2 start from the static description
of reference [2] and develop it step by step, for pedagog-
ical purpose, while refining it. Section 2.3 describes the
changes between two successive images. Section 3 is use-

Table 1. Symmetric matrices used in the text. Equation num-
bers correspond to their definitions. For comparison, the last
row indicates the strains defined in continous mechanics for
elastic, plastic and fluid behaviours.

Pattern Texture Topological Geometrical

statistics M changes changes

eqs. (3) T B

eq. (11) eq. (10)

Statistical Statistical Statistical Statistical

relative internal topological symmetrised

deformations strain rearrangement velocity

U rate P gradient V

eq. (14) eq. (20) eqs. (17,18)

Continuous Current Plastic Total

medium elastic strain strain

strain strain rate rate

εel ε̇pl ε̇tot

ful to compare measurements on different patterns; or to
compare experiments and simulations. Section 4 is more
theoretical and regards specific applications: it discusses
how to characterize materials which behave as continuous
media, that is, where the quantities vary smoothly with
space; and when it is possible to identify our statistical
tools with the usual quantities of continuous mechanics.
Appendices cover many practical, technical or theoretical
details including all standard definitions and notations of
matrices used in this paper.

2 Texture and time evolution of links in the

discrete pattern

2.1 Ingredients

The pattern is a collection of individual objects. Here we
are interested in the relative positions of these objects, not
in each object’s shape (although both are related in partic-
ular cases such as cellular patterns, see Appendix A.3.3).
We thus replace each object with a point called “site”.

The user should adapt the measurement tools to the
pattern under consideration, and the scientific questions
to be answered. For that purpose, the user should begin
by deciding: i) what are the relevant links, that is, pairs
of sites which are connected (Sect. 2.1.1); and ii) the av-
eraging procedure (Sect. 2.1.2 and App. A.1).

These choices are conventions, and thus rather free.
The results of the measurements depend on the chosen def-
inition, but they are much more robust than scalar mea-
surements (see Sect. 2.3.3). Moreover, as long as the same
definition is used for all measurements, the equations that
relate the measurements of the different quantities (such
as Eq. (9)) are valid independently of the chosen defini-
tion. Once conventions are chosen, it is thus important to
use them consistently.
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Fig. 4. Definition of sites and links. (a) Cellular pattern.
Background: detail from Figure 2b. Foreground: a site is a
cell’s geometrical center; there is a link between two centers
if their cells touch. (b) Particle assembly. Background: detail
from Figure 3a. Foreground: a site is a particle’s position; the
links are defined as discussed in the text (here a Delaunay
triangulation).

2.1.1 Links between neighbouring sites

In a cellular pattern (Figs. 1, 2), it is often advisable to
choose as sites each cell’s geometrical center (see Fig. 4a).
However, alternative choices exist. For instance, a user
interested in studies of dynamics might prefer the center of
mass, if different from the geometrical center. Similarly, a
biologist might be more interested in the cell’s centrosome
or nucleus. Note that we do not advise to use a definition
based on vertices (see App. A.3.2).

When two cells touch each other it defines that their
sites are connected. This is unambiguous if cells walls are
thin. This is the case for grains in polycristals, cells in
an epithelium, or in a foam with low amount of water
(Figs. 1a, 2).

If cells walls are thick, as is the case in a foam with a
higher amount of water (Fig. 1b), different definitions of
neighbours are possible. For instance, two cells are defined
as neighbours if their distance is smaller than a given cut-
off. Or, if they are neighbours on a skeletonized image;
that is, after an image analysis software has reduced cell
walls to one pixel thick black lines on a white background.
If cell walls are too thick, cells are really separated (as in a
bubbly liquid, where bubbles are round and far from each
other) and can be treated like the particles, which we now
discuss.

If each object is a particle (as in Fig. 3) it is natural
to choose its center as site (see Fig. 4b). There are various
possible choices for the links. Since the tools characterize
patterns and not forces, the definition of links is indepen-
dent of interactions: a link between sites does not mean
that sites interact; conversely, sites which interact are not
necessarily linked. Whatever the chosen definition, it is
important that each particle has only a finite number of
neighbours.

In a first case (Fig. 3b), the average distance between
particles is comparable to their average radius; for in-
stance, for a dense (also called compact or jammed) col-
loid or granular material. We then recommend to define
that two particles are linked if their distance is less than
a chosen cut-off. For hard spheres, this cut-off should be
the sphere’s radius plus a small tolerance.

In the opposite case, the average distance between par-
ticles is much larger than their average radius (Fig. 3a);
for instance, for a decompacted colloid or granular ma-
terial. We then recommend to recreate a cellular pattern
by attributing to each particle its Voronoi domain (the
set of points surrounding this particle, closer to it than to
any other particle). One then chooses to define that two
particles are linked if their Voronoi domains touch; this is
called the “Delaunay triangulation” of the particles.

If the pattern is a network, it is natural to choose
the nodes as sites. The connections are physically materi-
alised, and thus unambiguously defined.

2.1.2 Averaging

The present tools aim at describing the collective proper-
ties of links. In what follows, 〈·〉 denotes the average over
a set of links relevant to the user:

〈·〉 = N−1
tot

∑

(·),

where the sum is taken over the number Ntot of such links.
Appendix A.1 presents some technical details, especially
regarding the boundaries of the averaging region, which
can be treated as sharp or smooth.

The scale of study determines the number of links in-
cluded. Performing the same analysis at different scales
(Fig. 6) enables to obtain multi-scale results [7,3,11]. For
instance, we can measure the dependence of pattern fluc-
tuations with scale for particle assemblies.

Choosing to average over a small number Ntot of links
yields access to detailed local information. For instance,
the local heterogeneity of a sample of ice can be measured
by including the links around one single grain, then per-
forming a comparison between different grains [7]. Sim-
ilarly, to study the anisotropy of a biological cell which
divides, one can include only the links starting at this
cell’s center.

On the other hand, choosing a large number Ntot of
links yields better statistics. This is the case for instance
if the system is homogenous in space. In a homogenously
sheared foam (Fig. 1b), it makes sense to consider that all
bubbles play a similar role, and average over the whole
foam. Averaging over all links contained in the whole
image enables to detect the overall anisotropy of an ice
sample or an epithelium, and compare it with other sam-
ples [7].

Even if the system is invariant along only one direction
of space, one can average over this direction [11]. Similarly,
in a flow which is invariant in time, one can average over
time (Fig. 1a). In what follows, figures are prepared with
1000 successive video images, representing millions of bub-
bles: a time average yields good statistics and details of
local variations, even if only a small part (i.e. few links)
of each image is included (Fig. 6c).

2.2 Texture M: current state of the pattern

We include this section, already published [2,3], in order
to make the present paper self-contained.
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Fig. 5. Measurement of texture. Snapshots of two regions se-
lected in Figure 1a: the foam is nearly isotropic in A, not in B.
From the statistical analysis of links (lines), and time average
over several images, we compute the corresponding M. We rep-
resent it by an ellipse with axes proportional to the eigenvalues
λi: in A it is nearly circular. Thin lines indicate the axes with
positive eigenvalues (i.e. here all axes).

2.2.1 Definition and measurement

A pair of neighbour sites of coordinates r1 = (x1, y1, z1)
and r2 = (x2, y2, z2) constitutes a link. Reducing the pat-
tern to a set of links sets aside the detailed information
regarding the actual positions of each site.

The link vector

ℓ = r2 − r1 (1)

has coordinates (X,Y, Z) = (x2 − x1, y2 − y1, z2 − z1).
It carries the information on link length and angle. How-
ever, ℓ and −ℓ play the same physical role: an average over
several ℓ’s will yield a result which depends on this arbi-
trary choice of sign (and, in practice, if there are enough
links, the average 〈ℓ〉 turns out to be close to zero).

On the other hand, the number ℓ2 = X2+Y 2+Z2 is in-
variant under the change ℓ → −ℓ and thus has a physically
relevant (and non-zero) average: 〈ℓ2〉 = 〈X2 + Y 2 + Z2〉.
It reflects the average square link length, but loses the
information of angle.

The link matrix m combines the advantages of both:

m =

⎛

⎝

X2 XY XZ
Y X Y 2 Y Z
ZX ZY Z2

⎞

⎠ . (2)

Its trace is Tr(m) = ℓ
2. Its average defines the texture [2]

M = 〈m〉 =

⎛

⎝

〈X2〉 〈XY 〉 〈XZ〉
〈Y X〉 〈Y 2〉 〈Y Z〉
〈ZX〉 〈ZY 〉 〈Z2〉

⎞

⎠ . (3)

It is expressed in m2. As required, it stores the same infor-
mation regarding the current pattern: the square length,
readily visible as the sum of diagonal terms; the angle and
magnitude of anisotropy, as discussed below.

2.2.2 Diagonalisation and representation

By construction, M is a matrix with symmetric off-
diagonal terms (XY = Y X, etc. . . ). It can thus be di-
agonalised (see App. B.2 for details):

diag M =

⎛

⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠ . (4)

(a)

(b)

(c)

Fig. 6. Map of the texture measured in each region of the foam
flow (Fig. 1a). The area Vbox of each averaging box corresponds
to (a) 3, (b) 1 and (c) 0.3 bubbles (sub-bubble resolution);
since there are 1000 movie images, and 3 times more links than
bubbles [12], this corresponds to averages over 104, 3 · 103 and
103 links, respectively. Scale: actual image size, 15 cm× 10 cm;
M (ellipses): bar = 10 mm2, for the eigenvalues, which are here
all positive, and represented as ellipse axes lengths.

Its three eigenvalues λi (i = 1, 2 or 3) are positive. Their
sum, TrM, is exactly 〈ℓ2〉. In practice, they usually have
the same order of magnitude, of order of 〈ℓ2〉/3.

In a truly 3D pattern, M has strictly positive eigen-
values (except in unphysical examples). Thus its inverse
M

−1 always exists (Eq. (B.10)).

M can be represented as an ellipsoid, whose axes direc-
tions are that in which M is diagonal, represented as thin
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lines in Fig. 5. Each ellipsoid’s axes length is proportional
to the corresponding λi. It is expressed in m2: this is less
intuitive than m, and ellipsoids are more elongated than
the actual cell shape; but this is necessary for the consis-
tency with the representation of the other matrices (see
App. A.3.3). The square link length 〈ℓ2〉 is reflected in the
size of the ellipsoid, more precisely as the square root of
the sum of the three axes lengths; it is thus not propor-
tional to the ellipsoid’s volume. The direction in which
links are longer is represented by the direction of ellip-
soid elongation: the greater the pattern’s anisotropy, the
more elongated the ellipsoid. If the texture is measured at
several regions of the image, it is represented as several
ellipsoids, that is, a map of the texture field M(R, t) (see
also Sect. 2.2.3 and Fig. 6).

When the pattern is statistically isotropic, so is its
texture. It is thus diagonal in any system of axes, and the
three λi’s are exactly equal, λi = 〈ℓ2〉/3:

M
isotropic

=

⎛

⎜

⎜

⎜

⎝

〈ℓ2〉
3

0 0

0
〈ℓ2〉

3
0

0 0
〈ℓ2〉

3

⎞

⎟

⎟

⎟

⎠

=

〈

ℓ2
〉

3

⎛

⎝

1 0 0

0 1 0

0 0 1

⎞

⎠ . (5)

That is, the texture of an isotropic pattern contains only
the information of length: M = 〈ℓ2〉I3/3, where I3 is the
identity matrix in 3D. It is represented as a sphere. In that
case, all axes are equivalent (or “degenerated”).

2.2.3 Two-dimensional case

If the pattern under consideration is contained in a plane,
as are most experimental images, we turn to a 2D nota-
tion. As mentioned, this is straightforward

2D : M =

(

〈X2〉 〈XY 〉
〈Y X〉 〈Y 2〉

)

. (6)

There exist two orthogonal axes (eigenvectors) in which
M would be diagonal:

2D : diagM =

(

λ1 0

0 λ2

)

, (7)

with strictly positive λi, (i = 1 or 2). If we call 〈ℓ+〉 the
r.m.s. length of links in the direction of elongation (say, 1)
and 〈ℓ−〉 the r.m.s. length of links in the direction of com-
pression (say, 2), then λ1 ≈ 〈ℓ2+〉/2 and λ2 ≈ 〈ℓ2−〉/2. Its
inverse M

−1 always exists.
In 2D, M is represented by an ellipse (Fig. 5). Mea-

surements can be performed at larger scale to decrease the
noise due to fluctuations, or at smaller scale to evidence
more details of the spatial variations (Fig. 6).

When the pattern is isotropic, its texture is diagonal
with any choice of axes:

M

2D
isotropic

=

⎛

⎝

〈ℓ2〉
2

0

0
〈ℓ2〉

2

⎞

⎠

=

〈

ℓ2
〉

2

(

1 0

0 1

)

, (8)

That is, M = 〈ℓ2〉I2/2, where I2 is the identity matrix
in 2D. All axes are equivalent (or “degenerated”) and the
angle of eigenvectors is not defined. M is represented by a
circle and the thin lines lose their signification (Fig. 5A).

2.3 Time evolution

Differentiating equation (3) determines how M varies.
Appendix C.1, useful for practical calculations, discusses
finite-size effects due to the time interval between succes-
sive images of a movie. Neglecting these effects in eq. (C.4)
yields the simplified time evolution of M:

∂M

∂t
+ M

∂ log Ntot

∂t
= −∇ · JM + B + T. (9)

The variation of Ntot is negligible in most physical ex-
amples; however, it is significant for instance in biological
tissues with many divisions or in coarsening systems such
as ageing foams [12,13].

The three terms of the r.h.s. can be measured on
a movie, and have the following meaning. In the time
interval between two successive images, some links enter or
exit the region of averaging; some links change their length
or angle; some links are created or destroyed, respectively.
They are now discussed one by one (Sects. 2.3.1, 2.3.2
and 2.3.3; respectively).

2.3.1 Flux JM

In equation (9), JM is the flux of advection, that is, the
transport of texture. It counts the rate at which links en-
ter or exit throught the sides of the region of averaging.
Technically, it is a rank-three tensor (i.e. with 3 indices):
for more details see reference [14] and Appendix B.3. In a
good approximation, JM ≃ v ⊗ M, where v is the local
average velocity, see Appendix C.1. Its divergence ∇ · JM

counts the net balance between links that enter and exit; it
vanishes if M is spatially homogeneous, or at least is con-
stant along a flux line; it also vanishes if the local average
velocity is zero.

2.3.2 Geometrical texture changes: B

B describes the changes in the pattern’s overall shape,
that is, geometry: at which rate, and in which direction,
the pattern deforms. It reflects relative movements: it is
insensitive to a global, collective translation.
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Fig. 7. Changes in the shape of links (geometry). In a first
snapshot of a small region of the foam, links are represented
by dashed lines. The same bubbles are tracked on a next image,
with links represented by solid lines. To evidence how each link
changes, we have removed the overall translation (which plays
no role here), and superimposed both snapshots. We calculate
B and plot it as a coffee bean: an ellipse with a solid line
indicating the positive eigenvalue (direction of extension).

B is based on the links which, on both successive im-
ages, exist (i.e. do not undergo topological rerrangement)
and belong to the region of averaging (i.e. are not ad-
vected). These links may change in length and direction
(Fig. 7). We obtain each link’s contribution directly from
equation (2) and average it, like in equation (3):

B =

〈

dm

dt

〉

. (10)

Appendix C.1 provides more details; it also defines C,
whose symmetrical part is related with B, and will turn
useful to define W and V in Section 3.2.1. The right-
hand side of equation (10) should not be confused with
d〈m〉/dt; that is, B is not equal to the variation of M: as
equation (9) shows, the difference between them is due to
changes in the list of links included in the averages.

B is symmetric. Its units are in m2 s−1. It has a positive
eigenvalue in a direction of extension, and a negative one
in a direction of compression. In case of dilation, all its
eigenvalues are positive. In a region of shear, it is plotted
as an ellipse with one solid line drawn on it, similar to
a “coffee bean” (Fig. 7). We can plot a map of B: it is
similar to Figure 10, data not shown.

2.3.3 Topological texture changes: T

T reflects the topological changes, namely, changes in the
list of links: creation and destruction, that is, source term
of the texture. Appendix C.1 provides details. Briefly, each
link ℓa which has appeared since the preceding image has
a contribution given by equation (2), noted ma; and sim-
ilarly the contribution of a link which disappears before
the next image is noted md. Averaging over all links which
appear or disappear between successive images defines T

as
T = ṅa 〈ma〉 − ṅd 〈md〉 . (11)

The quantity ṅa (respectively, ṅd), expressed in s−1, is not
the time derivative of a physical quantity (which we would

(a)

ℓd

ℓa

(b)

(c)

(d)

Fig. 8. Changes in the list of links (topology). They are here
illustrated by cellular patterns but apply to all other patterns
as well. (a) Neighbour exchange in 2D: snapshots extracted
from a dry foam [6], one link disappears (dashes) and another
appears (thick grey line); and corresponding representation of
T as an ellipse, where a solid line indicates the positive eigen-
value. (b) Same, sketched in 3D: three links (hence 3 faces)
disappear and one appears. (c) Site disparition, in 2D or 3D:
all its links disappear. (d) Coalescence of two sites, in 2D or 3D:
the link between them disappears, the links to their common
neighbours merge (here there is a total of five disappearances
and two creations).

note d/dt). It is the rate of link appearance (respectively,
disappearance), per unit time and per existing link. If ṅa

and ṅd are equal, their inverse is the average link’s life
expectancy.

T is expressed in m2 s−1. It characterises the total ef-
fect on the pattern of all topological changes occurring
between two images. By construction it is symmetric, like
M: it can thus be diagonalized and represented as an ellip-
soid. It is robust to artefacts and errors in determinations
of neighbours [3]. It is general, and includes information
of frequency, size, direction and anisotropy for all con-
tributions of all topological changes: they can be treated
indifferently and added together. However, as we now dis-
cuss, the user might be interested in studying separately
the contributions of the different processes.

The coalescence of two sites (Fig. 8d) corresponds in
foams to the breakage of a liquid wall between two bub-
bles, with a net balance of minus one site [15]. The re-
verse process corresponds in epithelia to a cell division,
and results in one more site [16]. When the number of
sites decreases (respectively, increases), so does the num-
ber of links, and T usually has only negative (respectively,
positive) eigenvalues. The variation in the number of sites
and links is thus visible in the trace of T.
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Neighbour exchanges (Fig. 8a,b), also called “T1” in
the case of cellular patterns [12,13], preserve the sites; in
2D, they also preserve the number of links, ṅa = ṅd. It is
for that case that reference [3] introduced a specific defini-
tion of T. T usually is mostly deviatoric (App. B.1), with
both positive and negative eigenvalues (and a vanishing
trace), in directions correlated with the appearing and dis-
appearing links. Note that the eigenvectors are exactly or-
thogonal, while the appearing and disappearing links need
not be: thus eigenvectors are not strictly parallel to links,
especially when T is measured as an average over several
individual topological processes. For our flowing foam ex-
ample, a map of T (data not shown) would be similar to
Figure 18 of reference [3], or to Figure 11 below.

If a pattern has a free surface, when sites exchange
neighbours the number of links can vary, and thus locally
T can be far from deviatoric.

The disparition of a site (Fig. 8c) corresponds in foams
to a bubble which shrinks, also called “T2” [12,13]; and in
epithelia to a cell which dies, or exits the epithelium plane.
The reverse process is a site nucleation. Both processes
have an approximately isotropic contribution to T.

3 Statistical tools to obtain relative

deformations and their time evolution

This section facilitates comparison between different ex-
periments; or between experiments, simulations and the-
ory. This is useful for large-scale deformations and flows:
e.g. of particle assemblies, of foams and emulsions, of gran-
ular materials, or of biological tissues during morphogen-
esis.

Here we try to link the discrete, local description
of Section 2 with the continuous, global description of
Section 4. For this continuous description to be self-
consistent, it is necessary to get rid of the discrete objects’
length scale, that is, the typical size of links. For each of
the three discrete quantities M, B, T defined in Section 2,
it is possible to construct a continuous counterpart: that
is, a tool which is dimensionless (or expressed in s−1),
with no m2 any longer. This defines U, V, P, respectively
(Sects. 3.1, 3.2.1 and 3.2.2, respectively).

3.1 Statistical internal strain: U

The internal strain has been defined by Aubouy et al. [2]
through a comparison between the current pattern and
a reference one. We include it here in order to make the
present paper self-contained, and to provide additional ex-
planations and examples.

3.1.1 Strain of a single link

Consider first a link ℓ of length ℓ, and apply to it an in-
finitesimal variation dℓ. Its relative extension, or infinites-
imal strain, is dℓ/ℓ, or equivalently d(log ℓ) [17]. The “true
strain” (also called “Hencky strain” [17]) is defined with

respect to a state ℓ0 chosen as a reference (often a state
without stress) using several equivalent expressions:

∫

dℓ

ℓ
= log

(

ℓ

ℓ0

)

=
1

2
log

(

ℓ
2

ℓ2
0

)

=
1

2
[log Tr(m) − log Tr (m0)] . (12)

We perform these manipulations because the last expres-
sion of equation (12) is the easiest to generalise. It is not
a problem to take the log of dimensioned quantities (here,
the square of a length) because this cancels out in the final
result.

3.1.2 Statistical strain of the pattern

For a whole pattern, replacing Tr(m) by M enables to
perform statistical averages over links. The logarithm of
M is unambiguously defined and is easily performed in
three standard steps on a computer (App. B.2). It suffices
to first, switch to the three orthogonal axes (M’s eigenvec-
tors) in which M is diagonal; second, take the logarithm
of its eigenvalues, which are strictly positive (Sect. 2.2.2):

diag log(M) =

⎛

⎝

log λ1 0 0
0 log λ2 0
0 0 log λ3

⎞

⎠ ; (13)

and third, switch back to the original axes. It is necessary
to perform first all linear operations such as averaging.
This ensures in particular that all λi’s in equation (13)
are non-zero. Taking the logarithm, which is a non-linear
operation, has to be performed later.

Equation (13), like equation (12), requires to define
a reference, expressed in the same units as M, so that
the difference of their logarithms is well defined and di-
mensionless. Such a reference texture M0 is discussed in
Section 3.1.3.

The “statistical internal strain” is defined [2] as

U =
1

2
(log M − log M0) . (14)

Here U completely characterises the material’s cur-
rent strain: relative dilation, amplitude and direction of
anisotropy.

3.1.3 Reference texture M0

Practical details regarding the reference texture M0 are
presented in Appendix A.2.

Equation (14) shows that the exact choice of M0 af-
fects the value of U but not its variations. It thus does
not appear explicitly in the kinematics (Eqs. (21, C.19))
nor in the dynamics (for instance in the value of the shear
modulus, App. A.3.3). Moreover, equation (14) remains
unchanged if we multiply both M0 and M by a same pref-
actor; this is why the exact unit (e.g., m2, mm2, μm2) in
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which M0 and M are expressed is unimportant, as long
as it is the same unit for both.

Whatever the choice, the reference is defined by the
texture M0. It suffices to determine 6 numbers (3 num-
bers, if in 2D); or 1, in the (most common) case where
M0 is isotropic. Only the reference texture corresponding
to the current state plays a role; past changes of the ref-
erence pattern, for instance during an irreversible strain
(also called “work hardening” [18]), need not be taken into
account. It is never necessary to know the details of the
corresponding pattern’s structure, such as the positions of
each object one by one: it is even not necessary that this
pattern exists and is realisable.

3.1.4 Examples

This section presents a few examples and particular cases
of internal strain.

i) If the material is uniformly dilated (affine deforma-
tion, see Sect. 4.3.1) by a factor k in all directions, then
M = k2

M0. Thus U = log(k)ID, as is expected for in-
stance for gases; that is, in 3D

U =

⎛

⎝

log k 0 0
0 log k 0
0 0 log k

⎞

⎠ .

ii) Conversely, if the material is uniformly dilated by a
factor k in one direction and compressed by a factor 1/k
in another direction, then

diag U =

⎛

⎝

log k 0 0
0 − log k 0
0 0 0

⎞

⎠ .

iii) For incompressible materials, U’s diagonal terms
are usually both positive and negative, and their sum is
usually small: U is mostly deviatoric (App. B.1). Note
that even in incompressible materials the links’ mean
square length can vary slightly, so that Tr(U) is not nec-
essarily strictly zero. For instance, it reaches 0.03 in Fig-
ure 1b where a foam is sheared while keeping bubble num-
ber and total foam area exactly constant (Ataei Talebi and
Quilliet, private communication).

iv) In Figure 9, most ellipses look circular; devia-
tions from circles occur close to the obstacle. We dis-
tinguish regions where extension dominates, and ellipses
are stretched like coffee beans, from regions where com-
pression dominates, where the ellipses are flattened like
capsules.

v) If (but only if) M0 is isotropic, then U is diagonal
in the same axes as M. Then equation (13) enables to
rewrite equation (14) more explicitly:

diag U =

⎛

⎜

⎜

⎜

⎝

log
√

λ1

λ0

0 0

0 log
√

λ2

λ0

0

0 0 log
√

λ3

λ0

⎞

⎟

⎟

⎟

⎠

, (15)

Fig. 9. Elastic behaviour. Map of the statistical internal strain
U (Eq. (14)) measured on the foam of Figure 1a. Coffee bean
axes indicate the direction and amplitude of stretching (indi-
cated by a solid line) and compression. M0 is chosen as the
averaged value of M measured at the left and right of the
image, far from the obstacle. Same box size as in Figure 6b.
Scale: for ellipses axes lengths, bar = 1 (dimensionless) for the
positive eigenvalue and the absolute value of the negative one.

where λ0 is M0’s eigenvalue (e.g., λ0 = 〈ℓ20〉/3 is M0 if
we use the definition of Eq. (A.7)). Equation (15) reflects
that M and U have the same eigenvectors: they commute.
Equation (15) also relates the trace of U with M’s deter-
minant (product of eigenvalues):

Tr U = log

√

λ1λ2λ3

λ3
0

=
1

2
log (detM) − 1

2
log (detM0) . (16)

vi) In the limit of small strains, i.e. when M remains
close enough to M0, equation (14) can be linearised [2].
The difference of logarithms simply amounts to a divi-
sion by M0, that is: U ≃ (M − M0)M

−1
0 /2. This is true

whether M0 is isotropic or not (unlike Eq. (15)). This ap-
proximation is used in Appendix C.2.2.

3.2 Kinematics: time evolution

3.2.1 Statistical velocity gradient: W and V

We want to define the continuous counterpart of the geo-
metrical changes B (Eq. (10)). We use M

−1 (Eq. (B.10)),
which is in m−2, and is always defined. For reasons which
appear below (Eqs. (27-30)), we use C (Eq. (C.9)) as an
intermediate step, and define W as

W = M
−1

C = 〈ℓ ⊗ ℓ〉−1

〈

ℓ ⊗ dℓ

dt

〉

. (17)

W has the dimension of a strain rate (s−1): its order of
magnitude is the links’ average variation rate. Like B, it
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Fig. 10. Fluid behaviour. Map of the statistical symmetrised
velocity gradient V (Eq. (18)) measured on the foam of Fig-
ure 1a. Coffee bean axes indicate the direction and amplitude
of stretching rate (indicated by a solid line) and compression
rate. Same box size as in Figure 6b. Scale: for ellipses axes
lengths, bar = 0.1 s−1 for the positive eigenvalue and the abso-
lute value of the negative one. Grey levels: statistical vorticity
from the rotation rate Ω (Eq. (19)) in s−1.

vanishes when the pattern moves as a whole, with a rigid-
body translation.

For reasons which appear below (Eqs. (27-30)), we call
it the “statistical velocity gradient”, and we purposedly
define it as M

−1
C rather than CM

−1. In general, C is
not symmetric.

In practice, the most useful quantity is its symmetric
part, the “statistical symmetrised velocity gradient”:

V =
W + W

t

2
=

M
−1

C + C
t
M

−1

2
. (18)

It is the rate of variation of U due to the links’ stretching
and relaxation. In cases where C and M commute, M−1

C

is symmetric; using equation (C.8), equation (18) simply
writes V = BM

−1/2.
Figure 10 plots an example of V. It is large all around

the obstacle, but only very close to it; it is almost the same
before and after the obstacle. When the material’s den-
sity is constant, TrV is small (but not necessarily exactly
zero), and the corresponding ellipse is nearly (but not nec-
essarily exactly) circular.

The anti-symmetric part is the statistical rotation rate:

Ω =
W − W

t

2
=

M
−1

C − C
t
M

−1

2
. (19)

It has 3 independent components in 3D, but only 1 in 2D
(App. B.1). Thus Figure 10 plots it as grey levels.

3.2.2 Statistical topological rearrangement rate: P

We define the continuous counterpart of the topological
changes T (Eq. (11)) in a way similar to equation (18):

P = −1

2

M
−1

T + TM
−1

2
. (20)

Fig. 11. Plastic behaviour. Map of the topological strain rate
P (Eq. (20)) measured on the foam of Figure 1a. Coffee bean
axes indicate the direction of links which have just disappeared
(indicated by a solid line) and just appeared; note that this is
the inverse of Figure 8, due to the minus sign in Equation (20).
Same box size as in Figure 6a. Measurement boxes touching
the obstacle were removed. Scale: for ellipses axes lengths, bar
= 0.1 s−1 for the positive eigenvalue and the absolute value of
the negative one, both proportional to the frequency of rear-
rangements.

Here we have introduced a factor −1/2 so that P is
the term which unloads the statistical internal strain, as
will appear in equations (21, C.19). In cases where T

and M commute, such as in the companion paper [6],
M

−1
T is symmetric and equation (20) simply writes

P = −TM
−1/2.

This “statistical topological rearrangement rate” P

(Eq. (20)) has the dimension of s−1. It measures the fre-
quency and direction of rearrangements: it is of the order
of magnitude of the number of changes per unit time and
per link. Corresponding ellipses are elongated like coffee
beans (respectively, flattened like capsules) if the number
of links decreases (respectively, increases); if the number
of links is conserved, ellipses are nearly circular.

As an example, Figure 11 shows that the rearrange-
ments are more frequent just in front of the obstacle, or
in a very narrow region behind it. The rate of rearrange-
ments decreases smoothly with the distance to the obsta-
cle. This is due to the foam’s elasticity. It contrasts with
the sharp transition between solid-like and fluid-like re-
gions observed in purely visco-plastic materials [19,20].
The companion paper [6] presents an example with a
larger spatial distribution of topological events, which en-
ables for a better spatial resolution.

3.2.3 Kinematic equation of evolution

We have thus three independent symmetric matrices: U,
V and P. As discussed in Appendix C.2.3, there is a re-
lation between them.

In the case where we can neglect the variation in Ntot

and the higher-order terms in U, the time evolution of M
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approximately simplifies as (Eqs. (9, C.19, C.20)):

V =
DU

Dt
+ P . (21)

That is, the (statistical) symmetrised velocity gradient
is shared between two contributions: one part (which in-
cludes advection and rotation) changes the (statistical) in-
ternal strain, the other part is the (statistical) topological
rearrangement rate. How V is shared between both con-
tributions constitutes the main subject of the companion
paper [6].

Physically, equation (21) means that, when a pertur-
bation is applied to the overall shape of the pattern, part
of it affects the appearance of the pattern (loading) and
the other part goes into rearrangements (unloading). Sec-
tion 4 introduces a parallel point of view, in particular
with equation (25).

4 Continuous mechanics

This section applies to materials whose dynamics can be
described using continuous mechanics (Sect. 4.1), in terms
of stresses. We examine whether it is possible to relate
the continuous, large-scale, dynamical description on one
hand; and on the other hand the statistical measurements
based on discrete objects introduced in Section 3, which
describe the pattern’s connections (topology), shape (ge-
ometry) and movements (kinematics).

We recall that continous mechanics involves three kine-
matical quantities ε̇tot, εel and ε̇pl (Sect. 4.2), which are
related through equation (25). We then try (Sect. 4.3) to
identify it with equation (21).

4.1 Continuous description and RVE

If the material acts as a continuous medium [18,21,22],
it usually has the following properties. First, there exists
a range of Vbox sizes over which measurements yield the
same results [3]. In that case, the box is called a repre-
sentative volume element (RVE). This is usually obeyed if
Vbox is much larger than the range of interaction between
individual objects, and also larger than the correlation
length of their disorder (but these conditions are neither
necessary nor sufficient). Second, its description can be
local in space, that is, its equation of evolution involves
partial space derivatives, and the spatial variations of its
solutions look smooth. Third, the average quantities have
at large scale a role more important than that of fluctua-
tions.

Regarding the choice of the RVE, the discussion of
Section 2.1.2 applies. Here again, averages 〈·〉 on detailed
geometrical quantities are performed on a spatial box of
volume Vbox and over a time τ selected to suit the problem
under consideration. The shape of the box should prefer-
ably respect the system’s symmetries.

For the present purpose of a continuous description,
there is however the additional requirement that Ntot ≫ 1.

More precisely, the relative statistical uncertainty N
−1/2
tot

should be smaller than the relative precision required by
the user. A few tens or hundreds of links are often enough
(there is no need for 1023 links). This does not set any
theoretical lower limit to the size of Vbox: it can well be as
small as the link size, or even smaller, if there are enough
images to average (Fig. 6c).

4.2 Elastic, plastic, fluid behaviours

If the pattern behaves as a continuous material, we can
consider a RVE (Sect. 4.1) at position R. The velocity
field is 〈v〉(R), that is, an average over the whole RVE.
If R1 and R2 are the positions of two RVEs, the velocity
gradient ∇v is the spatial derivative of the velocity field,
and ∇v

t is its transposed (Eqs. (B.15, B.16)), then

〈v〉 (R2) ≃ 〈v〉 (R1) + ∇v
t · (R2 − R1) . (22)

Details on this notation can be found in Appendix B.3.
Equation (22) neglects terms of order of |R2 − R1|2 and
higher. It describes the velocity field as continuous and
affine, that is, a term which varies linearly with position
plus a constant term (offset).

One of the key ingredients of continuous mechanics is
the velocity gradient’s symmetrical part, that is, the total
strain rate:

ε̇tot =
∇v + ∇v

t

2
. (23)

This is a purely kinematical quantity, but it determines
the contribution to the viscous (dissipative) stress [21].

For small strain (linear elastic regime), neglecting ad-
vection and rotation, the integration of equation (23) de-
fines a total applied strain, which is a function of the past
history of the sample, as

εtot =

∫

dt ε̇tot ≈
∇u + ∇u

t

2
. (24)

Here ∇u is the gradient of the displacement field u, and
ε̇tot its symmetrical part.

The total strain rate ε̇tot contributes in part (loading)
to change the elastic strain εel, and in part (unloading) to
a plastic strain rate ε̇pl which is defined by their difference

ε̇tot =
Dεel

Dt
+ ε̇pl. (25)

Alternatively elasticity and plasticity are defined
through dynamics. A given region of the pattern is said
to be in elastic, plastic or viscous regime, according to the
contribution to the stress that dominates locally [23]. The
elastic strain εel contributes to the reversible part of the
stress. Plasticity describes the irreversible contribution to
the stress in the low velocity limit (note that rearranging
patterns can often deform a lot without breaking). Both
are solid behaviours, that is, exist in the limit of very low
velocity gradient. The viscous contribution to stress is ir-
reversible: it is due to, and thus increases with, the velocity
gradient; that is, relative movements of objects within the
material.
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Fig. 12. (a) Affine and (b) non-affine flow fields.

4.3 Link between discrete and continuous descriptions

4.3.1 Affine assumption

The affine assumption is analogous to, but much stronger
than, equation (22). It assumes that the velocity of each
individual object is affine too:

v (r2)
affine≃ v (r1) + ∇v

t · (r2 − r1) . (26)

An affine flow field and a non-affine flow field are plotted
in Figure 12.

In other words, this affine assumption implies that the
continous velocity gradient has a meaning down to the
level of individual objects, and that fluctuations around it
are small enough to have no effect on the material’s me-
chanical behaviour.

In cellular patterns, especially in dry ones where there
are no gaps nor overlaps, the movement of each individual
object is highly correlated with its neighbours’; thus the
affine assumption is reasonable [6]. In particle assemblies,
it might apply to dense assemblies of repelling particles,
which cannot be too close nor too far from each other.

Whenever this assumption is valid, it considerably sim-
plifies the description of the pattern evolution. Consider
for instance a link, ℓ = r2 − r1 (Eq. (1)). Its time deriva-
tive is

dℓ

dt
= v (r2) − v (r1) .

Thus, under the affine assumption (Eq. (26)), the velocity
gradient modifies all links in almost the same way by (see
Eq. (B.17)):

dℓ

dt

affine≃ ∇v
t · ℓ. (27)

In the definition (Eq. (C.10)) of C
t, the velocity gra-

dient can be taken out of the average:

C
t affine≃

〈(

∇v
t · ℓ

)

⊗ ℓ
〉

= ∇v
t 〈ℓ ⊗ ℓ〉 . (28)

That is

C
affine≃ M∇v. (29)

By injecting equation (29) into equation (17), we show
that W is a statistical equivalent of the velocity gradient
∇v:

W = M
−1

C
affine≃ ∇v. (30)

This is why we included M
−1 only on the left side of W

(Eq. (17)).

4.3.2 Velocity gradient and total strain rate

By comparing equation (23) with equations (18, 30) we
identify the statistical and dynamical definitions of the
total strain rate:

V
affine≃ ε̇tot. (31)

V thus appears as a statistical measurement of the
symmetrised velocity gradient ε̇tot. When only large-scale
measurements are possible, only ε̇tot can be measured.
However, when the detailed information on links is avail-
able to perform statistics, measuring V offers several ad-
vantages.

i) The signal-to-noise ratio is optimal, in the sense that
all local information, and only it, is used. Each link acts
as a small probe of the local velocity differences: the spa-
tial derivative is taken naturally at the places where the
objects are, not on the larger scale of RVEs.

ii) V is intrinsically based on the material’s structure.
It can be defined and measured even if there are only a few
objects; or if the standard deviation of their velocities is
large. Averaging over all links provides a statistical mea-
surement of the total strain rate. At no point does the defi-
nition or measurement of V require any affine description.

iii) Physically, we expect V to play a more general role
than ε̇tot, because it is based on the individual objects
themselves. For instance, we expect V to be determinant
in yielding, and thus in the description of plasticity (and
possibly Ω too) [6]. Similarly, the material’s internal dis-
sipations are probably more closely related to changes in
the links than to a large-scale velocity gradient: this sug-
gests that the dissipative contribution to the stress arises
in general from V rather than from ε̇tot.

4.3.3 Strain, in the elastic regime

In this section we consider the particular case where the
material is in the elastic regime. There is no plastic strain
rate, ε̇pl = 0. Equation (25) becomes simply

Dεel

Dt

elastic
= ε̇tot. (32)

Thus, in the elastic regime, the elastic strain and the
total strain rate are not independent physical quantities.
Combining equations (24) and (32) shows that

εel ≈ εtot. (33)

More precisely, at least in the linear elastic regime, one
can identify two quantities: the symmetrised gradient of
the displacement field, εtot, which is a function of the past
history of the sample; and the elastic strain εel, which is a
function of state. In fact, in elasticity, both quantities are
considered as equivalent [22].

On the other hand, under the affine hypothesis, ref-
erence [2] for the linear elastic regime (small strains),
and reference [11] for the non-linear elastic regime (large
strains), demonstrate that

U

affine
elastic≃ εtot. (34)
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The demonstration of equation (34) is similar to that for
V (Eqs. (28-31)): it uses the same hypotheses, with the
additional assumption that M and M0 commute (which
is satisfied if M0 is isotropic).

Equations (33, 34) show that in the elastic regime

U ≈ εel. (35)

Thus the elastic strain εel can be measured using two dif-
ferent methods. When large-scale measurements of total
strain are possible, εel can be measured as εtot. When
the detailed information on links is available, measuring
εel as U offers many advantages, similar to that of V

(Sect. 4.3.2).
An acceptable definition of strain must coincide with

εtot in the linear elastic regime. As a consequence, it also
implies that it is a conjugate of stress: the scalar product
of stress by an infinitesimal increment of strain equals the
increment of energy. This is a dynamical constraint on ac-
ceptable definitions; but it is a weak constraint (especially
since the conjugate equation is a scalar relation). In itself,
it is insufficient to define all components of strain.

There are thus several families of acceptable definitions
of internal strain [11,24]; one family contains an infinity
of acceptable definitions [25]. Some definitions are par-
ticularly adapted to a discrete pattern’s geometry [26] or
dynamics [27].

Here, equation (14) is a definition of strain which is:
i) one of the definitions acceptable in the whole elastic
regime, even at large strain (Eq. (35)) where it coin-
cides [11] with a true strain [28]; ii) probably the only
definition valid outside of the elastic regime [11], when
bubbles rearrange and move past each other, that is, when
the pattern flows: the main advantage of eq. (14) is that
it does not require the detailed knowledge of each object’s
past displacement.

4.3.4 Plastic strain rate, in steady flow

In the more general case, there is a plastic strain rate,
ε̇pl 	= 0, and deformations can be strongly non-affine.
Equation (32) does not hold. The current elastic strain
εel and the total strain rate εtot are independent physical
quantities; εel can no longer be measured as ε̇tot (whether
it can be measured as U is discussed in Sect. 4.3.5).

For instance, if the material flows, the displacement
of an object relatively to its neighbours can be arbitrary
large; ε̇pl can become much larger than Dεel/Dt. In the
extreme cases of steady flows, independent of time, it is
possible (in the absence of advection) that Dεel/Dt = 0,
and equation (25) reduces to

ε̇tot
steady

= ε̇pl. (36)

According to equation (20), a steady flow with a corota-
tional derivative that vanishes (meaning no advection nor
rotation effects, see Eq. (C.20)), implies that all the geo-
metrical strain rate translates into the topological strain
rate:

P
steady

= V.

Using the identification of equation (31), we therefore ob-
tain in that case:

P

affine
steady≃ ε̇pl. (37)

4.3.5 Complete identification

The statistical tools U and P are always defined and mea-
surable, even out of the elastic regime, or out of the steady
regime. If we could identify them with εel and ε̇pl, respec-
tively, it would make possible to measure the elastic strain
in all regimes. This is certainly not possible in general, as
shown by both the following counterexamples [29].

In granular systems, due to solid friction in the con-
tacts, irreversible plastic strains appear before the list of
contacts changes. In solid networks (e.g. solid foams) with
no topological change, the bond themselves might behave
plastically, or they might perhaps undergo buckling in-
stabilities leading to non-reversible stress-strain curves.
Those are examples in which plasticity occurs before the
first topological change.

Conversely, consider a set of rigid cables which resist
tension, but no compression, and tie them together at
knots to form a redundant, hyperstatic network. Under
given external forces on the knots, some cables will be
taut, others will dangle and transmit no force. Upon
changing the forces, the list of taut, tension-carrying ca-
bles will change. This can be regarded as a topological
change. The response, which implies displacements and
strains, is however reversible and might be called elastic.
Hence a case for which plasticity begins after the first
topological change.

This identification might turn possible in some partic-
ular cases where one can express the stress as a function
of kinematical quantities. This seems to be the case for
foams and emulsions [4,6]. We hope that in these cases,
statistical measurements can constitute a coherent lan-
guage to unify the description of elastic, plastic and fluid
behaviours, as well as facilitate models and tests.

5 Summary

In the present paper, we define tools (Tab. 1) to extract
information from a pattern made of discrete objects, sub-
ject to rearrangements, within a wide class of complex
materials made of individual constituents such as atoms,
molecules, bubbles, droplets, cells or solid particles. They
characterise quantitatively the mutual arrangements of
these objects, or more precisely the links between neigh-
bouring objects.

Their definition, which can flexibly adapt to the ques-
tions to be answered, is operational. That is, given an
experimental or simulated pattern, whether in 2D or 3D,
there is a well-defined method to measure them directly as
statistics on individual constituents (links between neigh-
bouring sites). This measurement is easy, and requires
only a few basic operations on a computer: multiplication,
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average, diagonalisation, logarithm. It is robust to exper-
imental noise, even if there is a limited number of links.

M, B (or C) and T characterise the current state of
the pattern, its geometrical changes, and its topological
rearrangements, respectively. They are explicitly based on
the pattern’s discrete structure. They can be measured
locally, for instance on a single biological cell, or grain in
crystals. But they can also be measured as averages over
a larger region in space, or as time averages. In foams,
measuring them smoothens out the pattern fluctuations
due to the discrete nature of bubbles, and evidences the
underlying behaviour of the foam as a continuous medium.

Their statistical counterparts U, V (or W) and P, are
independent of the pattern’s discrete length scale. Each of
them exists and is valid together in elastic, plastic and
fluid regimes: they unify the description of these three
mechanical behaviours. They facilitate the comparison be-
tween experiments, simulations and theories. In at least
the linear, affine, elastic regime, we suggest how to iden-
tify them with the quantities which characterise the conti-
nous mechanics: elastic strain, total strain rate, and plastic
strain rate, respectively. From a practical point of view,
this offers the advantage of measuring these continuous
quantities with an optimal signal-to-noise ratio, even with
few discrete objects. On a fundamental side, this provides
a physical basis to the description of a continuous medium,
at any local or global scale, by relating it to the individual
constituents. Moreover, it provides a coherent language
common to elasticity, plasticity and fluid mechanics.

The companion paper [6] illustrates most of these
points on a detailed practical example.

This work was initially stimulated by a seminar delivered
by G. Porte. We thank M. Aubouy, S. Courty, J.A. Glazier,
V. Grieneisen, M. Hindry, E. Janiaud, Y. Jiang, J. Käfer,
S. Marée for discussions. We thank the colleagues who have
made constructive comments about the first version of the
manuscript.

Appendix A. Measurement techniques

This Appendix, aimed at non-specialists, lists practical
advices based on our past experience.

Appendix A.1. Averaging procedure

Appendix A.1.1. Weights

The average of any quantity x is

〈x〉 =
1

Ntot

∑

w x, (A.1)

where the sum is taken over all links in the averaging
region. Here w is the weight of the link: for almost all
links in the averaging region, w = 1; at the boundaries of

ﾀ3 ﾀ2 ﾀ1 0 1 2 3

0

0.5

1

x/a

w

Fig. 13. Examples of averaging procedures: a link’s weigth
vs. its position, here the box range is the segment [−a, a].
Dots: “all or nothing”. Dashes: “proportional”. Solid line:
“coarse grained”, here with a hyperbolic tangent profile mir-
rored around the origin.

the averaging region, w decreases to zero, different choices
being possible (App. A.1.2). Here we note

Ntot =
∑

w. (A.2)

For instance, the texture is

M = 〈m〉 =

∑

w ℓ ⊗ ℓ
∑

w
. (A.3)

Appendix A.1.2. Choices of weights

There are at least three main possible choices for the av-
eraging procedure (Fig. 13). Once a procedure has been
selected, it is important to keep consistently the same for
all measurements.

The topology is useful for local information, especially
for a single site: particle or cell. This is the case for in-
stance when studying the division of a cell [30]. In that
case, each link is either included or excluded (“all or noth-
ing”, w = 0 or 1). One should at least include the links
between the site of interest and its neighbours (first shell).
Statistics are over a few links only, and are easy to com-
pute, even sometimes by hand. This defines the i-th site’s
texture as a sum over its ni neighbours, labelled j:

Mi =
1

ni

ni
∑

j=1

mij . (A.4)

One can also choose to include the second shell (next near-
est neighbours), third, or even higher. The total pattern’s
texture (Eq. (A.3)) appears as the average of the nsite site
textures, weighted by the site’s number of links, and with
a factor 1/2 because each link is counted twice (each link
belongs to two sites)

M =
1

2Ntot

nsite
∑

i=1

ni
∑

j=1

mij =
1

2Ntot

nsite
∑

i=1

niMi. (A.5)

The same definitions (Eqs. (A.4) and (A.5)) apply for B

or T.
The geometry is useful for a continuous description,

typically to measure U(R, t), P(R, t) or V(R, t) in a RVE
as a function of space and time. This is the case for the
examples of foam flow which illustrate this paper. The av-
erage is over all links in a box which respects as much as
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possible the symmetry of the problem: e.g. rectangle or
annulus. The dimensions of the box determine the scale
of averaging. The measurements are performed on boxes
at different positions R. The distance between measure-
ments positions cannot be more distant than the box size
(it would leave gaps between boxes), but they can be closer
(thus boxes overlap). If the box dimension is much larger
than a link, one might choose to neglect links which cross
the box boundary. But in general, links which cross the
boundary require attention (especially near the box cor-
ner) if an automatised image analysis is used. An addi-
tional choice is required. A first possibility (“all or noth-
ing”), computationally simpler, is to look where the link’s
center lies: if the center lies inside the box, the link is as-
signed to this box (w = 1); else, this link is not counted
(w = 0) [31]. A variant is to assign half of each link
(w = 1/2) to the two boxes of the two bubble centres
it binds [3]. A second possibility (“proportional”), which
yields a better precision, consists in weighting the link
with w equal to the fraction of the link which is inside the
box (the remaining 1 − w is outside) [11].

The coarse graining is seldom convenient in the prac-
tical applications considered here. However, theoreti-
cians use it [27], especially for the advection term (see
App. C.1) [14]. A link at position r is counted in a box at
position R with a weight w(|r−R|). The coarse-graining
function w is a function which is non-increasing, from
w(0) = 1 to w = 0, and has an integral equal to 1.
Its width at half-height (that is, where w = 1/2) defines
the scale of coarse graining. It is a continous and differen-
tiable function, so that advected links smoothly enter and
leave the averaging box, without singularity [27].

Appendix A.2. Choice of M0

Since the reference texture M0 plays almost no physical
role, its choice is not very important. It depends on the
problem under consideration, but once its definition is cho-
sen, it should be kept consistently. In practice, the choice
depends on the available information. Here are a few pos-
sibilities.

i) The most favorable case is when M0 can be mea-
sured directly. In experiment, this is possible when an im-
age can be chosen as reference, for instance a stress free
pattern. In simulation (Fig. 3b), this requires to relax the
stress under prescribed constraints.

ii) M0 can be determined theoretically in some cases,
such as a set of particles whose interaction potential is
known. This occurs in Figure 3a, where the natural refer-
ence is the honeycomb pattern with a link size

ℓ20 = 2
√

3Alink = 2
A√
3

. (A.6)

Here Alink is the area per link, and M0 = ℓ20I2/2; A =
3Alink is the area per particle or cell (Sect. A.3.1).

iii) In cases such as Figure 1, no reference state is
known in details. If only 〈ℓ20〉 is known, we suggest to take

M0 as isotropic. Although we do not know any fundamen-
tal reason for that, it seems to be satisfactory in all prac-
tical cases we have encountered. From equations (5, 8) it
writes, in D = 2 or 3 dimensions

M0 =

〈

ℓ20
〉

D
ID. (A.7)

iv) In some cases, 〈ℓ20〉 is not known but we can esti-
mate it. For instance, in a 2D cellular pattern of known
average area 〈A〉 (Fig. 2), the comparison with hexagons
(Eq. (A.6)) suggests to take approximately

〈

ℓ20
〉

≈ 2 〈A〉√
3

, (A.8)

and M0 = ℓ20I2/2.
v) The most unfavorable case is when even 〈ℓ20〉 is un-

known. A possibility is to take

M0 ≈ λ̄ID,

where λ̄ is the average of the λi’s, M’s eigenvalues. Taking
the arithmetic average, λ̄ =

∑

i λi/D, corresponds to the
assumption that 〈ℓ2〉 is conserved: 〈ℓ20〉 ≈ 〈ℓ2〉. Taking the
geometric average, λ̄ = (

∏

i λi)
1/D, corresponds to the

assumption that TrU = 0, which is close to assuming
that the material is incompressible (see Sect. 3.1.4).

Appendix A.3. The case of 2D dry cellular patterns,
especially foams

Appendix A.3.1. Number of neighbours

In 2D dry cellular patterns, the number of neighbours of
each cell is variable; but its average over the whole pat-
tern is always close to 6 neighbours, and thus 6 links, per
cell [12,13]. Since each link is shared by two cells, the
number of links is 3 times the number of cells. This is
also true for a moderately wet cellular pattern, if neigh-
bours are defined on a skeletonized image. It extends to
Voronoi/Delaunay definition of neighbours for particles.

Some cells might meet by four (“4-fold vertex”). In
that case, we recommend to decide that cells which share
only a vertex should not be considered as neighbours. This
choice is consistent with the fact that the texture describes
the cell shape and arrangement (Sect. A.3.3). Moreover,
this avoids many artefacts when measuring the T1’s.

Appendix A.3.2. Cell centers versus vertices

Aubouy et al. [2] chose to describe a cellular pattern (such
a 2D dry foam) as a network, each site being a vertex (that
is, a point where three cells meet). Here, we prefer to use
cell centers, for several reasons.

i) First, and most important: the centers move ac-
cording to the overall velocity field (while vertices have
a highly fluctating displacement), thus the affine assump-
tion (Eq. (26)) applies.
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ii) It is more robust, because a cell center is measured
as an average over several pixels (while a vertex is a single
pixel, whose position might depend on the image analysis
procedure).

iii) This has the advantage of being more general: it
applies to all other discrete patterns; and even within cel-
lular patterns, it generalises to wet foams, and to 3D.

iv) Finally, the topological rearrangements are well
characterised (while on the opposite, if ℓ was defined as
the vector between two vertices, a T1 occurrence would be
defined as ℓa = ℓd = 0, so that the contribution of a T1
to Eq. (11) would systematically be zero).

Appendix A.3.3. Texture and inertia matrices

Marée et al. [32] propose to measure the shear modulus by
considering the variation of cell shapes. Each cell’s shape is
characterised by its inertia matrix, 〈r⊗r〉: it looks similar
to equation (2), but it is averaged over the position r of
pixels inside a cell; thus their description is intra-cellular.
Ours, averaged over the links between the cells, and thus
based on the shape of the overall pattern, is rather inter-
cellular.

In dry cellular patterns, where there are no gaps be-
tween cells, nor overlaps, the deformation of each cell is
highly correlated to the global strain; thus, in this case,
both descriptions coincide and yield approximately the
same results.

For instance, note that the shear modulus is the vari-
ation of elastic stress with respect to infinitesimal varia-
tions of U. This measurement is robust [31,11]. As men-
tioned in Section 3.1.3, it is not affected if we multiply M

and M0 by a same prefactor; and even if we change M0,
see for instance equation (14). This is why this particular
measurement gives similar results with both inertia and
texture.

Here, we prefer to use the texture based on cell centers,
which is more general, for several reasons.

i) It also applies to characterise the strain of wet foams
(where bubbles are round, and thus each bubble’s inertia
is isotropic).

ii) It applies to all other discrete patterns, including
particle assemblies.

iii) Centers, rather than shape, are involved in the kine-
matic description, including equations (18, 20). It could in
principle be possible to define an equivalent of B (and even
of V) based on inertia matrix, but its physical meaning
is unclear; and it is probably not possible to define an
equivalent of T (and P).

iv) It extends to more than one cell; while the inertia
matrix of several cells can be defined, its physical meaning
is not relevant to the pattern description.

Note that in the graphical representation of the inertia
matrix, the ellipse axis lengths are the square root of the
matrix’ eigenvalues [32]. The advantage is that the ellipse
elongation is the same as that of the actual cell. Here,
taking the square root of eigenvalues has no physical sig-
nification for any matrix (except for the texture), so that
we plot the matrix’ eigenvalues themselves (Sect. 2.2.2).

Appendix B. Matrices: notations and

definitions

This appendix is aimed at readers who are not familiar
with the matrices. We list all standard definitions used in
the text, from the simplest to the most complicated.

Appendix B.1. Matrices

We work here in a space with D = 3 dimensions. A scalar
is a simple number; a vector is a list of D numbers; a
matrix is an array of D × D numbers. All these objects
are tensors, of rank 0, 1 and 2, respectively. In this paper,
there also appears J , which is a tensor of rank 3 (for which
there exists no particular name), that is, an array of D3

numbers.
A matrix A is an array with components Aij , where

the indices i, j = 1, 2 or 3:

A =

⎛

⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠ . (B.1)

Its trace is the sum of its diagonal terms:

TrA = A11 + A22 + A33. (B.2)

Its transposed A
t has components At

ij = Aji, and has the
same trace. Any matrix can be rewritten as the sum of its
symmetric and antisymmetric parts:

A =
A + A

t

2
+

A − A
t

2
.

A matrix S is said to be symmetric if it is equal to its
transposed, S = S

t, that is, Sij = Sji (while an anti-
symmetric matrix is equal to minus its transposed); by
definition, the symmetric part of A is always symmetric.
A symmetric matrix can itself be rewritten as an isotropic
term and a traceless (or deviatoric) term:

S =
Tr(S)

D
ID + Dev(S), (B.3)

where ID is the identity matrix in dimension D (appearing
in Eq. (5)).

Itself, the deviatoric part can be decomposed in
diagonal components, called normal differences, and off-
diagonal ones.

To summarize, a matrix has in general 9 independent
components Aij . They can be rewritten as 3 antisym-
metric ones, namely (A12 − A21)/2, (A23 − A32)/2, and
(A31−A13)/2; and 6 symmetric ones, namely 1 trace A11+
A22 + A33, 2 normal differences A11 −A22 and A22 −A33,
3 off-diagonal terms (A12 + A21)/2, (A23 + A32)/2, and
(A31 + A13)/2. This means that an antisymmetric matrix
has 3 independent components, a symmetric matrix one
has 6, a deviatoric one has 5, an isotropic one has 1.

The product between matrices is another matrix:

(AB)ij =
∑

k

AikBkj . (B.4)



F. Graner et al.: Discrete rearranging patterns: Robust tools 365

The product between a matrix and a vector is another
vector:

(A · a)i =
∑

k

Aikak. (B.5)

The scalar product between matrices is a number:

A : B =
∑

i,k

AikBki = Tr
(

AB
t
)

. (B.6)

The (“Euclidian”) norm of A is a strictly positive number
defined in any dimension D as

‖A‖ =
√

A : A =

⎡

⎣

∑

i,k

(AikAki)

⎤

⎦

1/2

. (B.7)

Many practical applications regard 2D images. Ma-
tricial notations are valid in any dimension D, and it
is straigthforward to rewrite them in 2D, see also Sec-
tion 2.2.3. In 2D, a matrix A has in general 4 indepen-
dent components Aij , where i, j = 1 or 2. They can be
rewritten as 1 antisymmetric one, namely (A12 − A21)/2;
and 3 symmetric ones, namely 1 trace A11+A22, 1 normal
difference A11 − A22, 1 off-diagonal terms (A12 + A21)/2.
This means that an antisymmetric matrix has 1 indepen-
dent component, a symmetric matrix has 3, a deviatoric
one has 2, an isotropic one has 1.

Appendix B.2. Diagonalisation

For a symmetric matrix S, there exist three orthogonal
axes, called S’s eigenvectors (from the German word
“eigen”, meaning “own”), in which S would be diagonal,
see for instance equation (4). That is, if we used these
axes (instead of the original ones) to measure the matrix,
it would have non-zero terms only along its diagonal:

RSR
−1 = diag S =

⎛

⎝

s1 0 0
0 s2 0
0 0 s3

⎞

⎠ . (B.8)

Here R is the matrix of rotation from the original axes to
the eigenvectors. The three numbers s1, s2, s3 are called
the matrix’ eigenvalues. We label them in order of decreas-
ing absolute value: |s1| ≥ |s2| ≥ |s3|.

They determine many properties of S, including its
trace and norm:

Tr(S) = s1 + s2 + s3,

‖S‖ =
√

s2
1 + s2

2 + s2
3. (B.9)

If they are non-zero, the inverse of S exists, and it is di-
agonal in the same axes as S:

S
−1 = R

−1

⎛

⎝

1
s1

0 0

0 1
s2

0

0 0 1
s3

⎞

⎠R. (B.10)

Fig. 14. Ellipses to represent matrices of eigenvalues s1 and s2,
with a solid line to represent positive eigenvalues. (a) Two pos-
itive eigenvalues are represented by a “crossed ellipse”. The cir-
cle represents an isotropic matrix, s1 = s2. (b) When there is
one positive and one negative eigenvalue, the circle represents
s1 = −s2 > 0; the “coffee bean” ellipse is elongated along the
positive eigenvalue (s1 > −s2 > 0); the “capsule” ellipse is
elongated along the negative eigenvalue (−s1 > s2 > 0).

If they are strictly positive, the logarithm of S (see
Eq. (13)) is defined by rotating to the eigenvectors, tak-
ing the logarithm of the eigenvalue, and rotate back to the
original axes:

log S = R
−1

⎛

⎝

log s1 0 0
0 log s2 0
0 0 log s3

⎞

⎠R. (B.11)

By construction, log S is symmetric too, and diagonal in
the same axes as S.

The literature of mechanics [18,33] sometimes uses a
specific definition of shear. It is characterised by a devia-
toric matrix with two opposite eigenvalues (s1 = −s2 = S)
and nothing in the third direction (s3 = 0). Its amplitude
S is defined as

S =

⎡

⎣

1

2

∑

i,j

S2
ij

⎤

⎦

1/2

=
‖S‖√

2
. (B.12)

In 2D, a matrix can be represented graphically by an
ellipse, whose axes, represented by solid lines, are in the
directions θ and θ+90◦, and have length s1 and s2, respec-
tively; the sign of the eigenvalues is labeled specifically
by plotting a line for a positive eigenvalue, and no line
for a negative eigenvalue (Fig. 14). The ellipse anisotropy
η = (|s1| − |s2|)/|s1| = 1 − |s2/s1| is between 0, for a cir-
cle, and 1, for an extremely thin ellipse. The ellipse size is
characterised by |s1| + |s2|.

If S has strictly positive eigenvalues, s1 ≥ s2 > 0, it is
entirely defined by three numbers: first, its trace Tr(S) =
s1+s2, equal to the ellipse’s characteristic size; second, its
anisotropy η = 1−s2/s1, equal to that of the ellipse; third,
the direction θ of its largest eigenvalue’s axis (0◦ ≤ θ <
180◦), which is ill-defined for an isotropic matrix (η close
to 0). Its determinant s1s2 is proportional to the ellipse
area, but it is not used in the present paper.
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Appendix B.3. Outer product

The outer product (or tensor product) of two vectors a, b

is the matrix of components aibj :

a ⊗ b =

⎛

⎝

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎞

⎠ . (B.13)

Its trace is the scalar product a · b:

Tr(a ⊗ b) = a · b = a1b1 + a2b2 + a3b3.

For instance, equation (2), and equations (3) or (6), write

m ≡ ℓ ⊗ ℓ,

M ≡ 〈ℓ ⊗ ℓ〉 . (B.14)

In equation (B.14), the physical interpretation of the outer
product by ℓ is that it transforms the surface integral of
a discrete individual vector, the link, into a bulk integral
of a continuous average matrix, the texture [2,11].

The outer product is also used for the notation ∇ =
(∂/∂ri) = (∂/∂x, ∂/∂y, ∂/∂z) (called gradient, or nabla)
which symbolises the space derivatives:

∇v = ∇ ⊗ v =
∂vj

∂ri

=

⎛

⎜

⎝

∂v1

∂x
∂v2

∂x
∂v3

∂x
∂v1

∂y
∂v2

∂y
∂v3

∂y
∂v1

∂z
∂v2

∂z
∂v3

∂z

⎞

⎟

⎠
(B.15)

More precisely, equation (22) uses its transposed

∇v
t =

∂vi

∂rj
. (B.16)

Similarly, the rotational is the vector product ∇i × vj .
However, rheologists [18,33] often prefer the notation

grad v = ∂vi/∂rj . This creates an ambiguity with equa-
tions (B.15, B.16). In case of doubt, it is safe to come
back to indices, which are unambiguous. For instance, the
demonstration of equation (27) writes as follows:

∂ℓi

∂t
= vi

(

rj + ℓj

)

− vi(rj) =
∑

j

∂vi

∂rj
ℓj . (B.17)

In Section 2.3.1 and in equation (C.4), the notation
J = v⊗M means Jijk = viMjk, and the notation ∇ · J
is equivalent to

∑

i ∂Jijk/∂ri.

Appendix C. Time evolution

Appendix C.1. Finite time interval ∆t

This Appendix can be useful for a user who wants to anal-
yse a movie (and not only a static image). It helps to
understand the definitions, units and measurements of B

and T; as well as the time evolution of M (Eq. (9)).

Appendix C.1.1. Time interval between images

We consider a movie. To obtain good measurements, aver-
ages can be performed on a large time interval τ , that is,
a large number τ/Δt of images. Here Δt is the time inter-
val between two consecutive images, at times t and t+Δt.
Ideally, measurements should not depend too much on the
exact value of Δt. In practice, however small Δt is, it is
finite, and this discretisation has consequences, see below
equations (C.2, C.6)

If possible, Δt should be chosen small enough to en-
able a good tracking of objects from one image to the
next (typically, during Δt, relative displacements of sites
should be a fraction of the inter-sites distance). This is
unimportant if objects are labelled individually, as is the
case in simulations.

Δt should also be chosen small enough that for
any time-dependent (but space-independent) quantity x,
Δx/Δt tends towards its time derivative dx/dt. When x
depends both on space and time, Δx/Δt tends towards
dx/dt if the measurement box moves along with the links
(the so-called “Lagrangian” point of view, often useful in
theory). When the measurements are performed in a fixed
region of space (the so-called “Eulerian” point of view, of-
ten useful in practice, especially in steady flows), Δx/Δt
tends towards its partial time derivative ∂x/∂t.

Equation (A.3) can be rewritten as

NtotM =
∑

w ℓ ⊗ ℓ =
∑

w m. (C.1)

Its variation between successive images, divided by Δt,
involves the links ℓa (respectively, ℓd) appeared (respec-
tively, disappeared) during Δt. This means that Ntot and
M are evaluated both at t and t+Δt; ℓa and ma (respec-
tively, ℓd and md) are evaluated at t+Δt (respectively, t).
Then

Δm = Δ (ℓ ⊗ ℓ)

= Δℓ ⊗ ℓ + ℓ ⊗ Δℓ + ξΔℓ ⊗ Δℓ. (C.2)

Here ξ = 1 if ℓ is evaluated at time t; ξ = −1 if ℓ is
evaluated at time t + Δt; and ξ = 0 if ℓ is the average
of its values at t and t + Δt, which is recommended to
simplify equation (C.6).

Appendix C.1.2. Effect of discrete time

The variation of equation (C.1) between successive images
writes

Δ(NtotM)

Δt
=

∑ Δw

Δt
m +

∑

w
Δm

Δt

+

∑

a wama −
∑

d wdmd

Δt
. (C.3)

Quantities in equation (C.3) are extensive, and are
convenient for practical measurements. However, for the-
ory, intensive quantities are easier to manipulate (Tab. 1).
Dividing both sides by Ntot yields

ΔM

Δt
+

M

Ntot

ΔNtot

Δt
= −∇ · JM + B + T. (C.4)
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Equation (C.4) tends towards equation (9) in the limit of
small Δt, as we now show term by term.

The relative variation of Ntot during Δt is Δ log Ntot/
Δt, and at small Δt it tends towards ∂ log Ntot/∂t.

The advection term −∇ · JM is the term in Δw/Δt,
in equation (C.3). It is due to links entering or exiting
the region where M is measured (see Sect. 2.3.1). In a
first approximation, JM ≃ v ⊗ M. The demonstration
is delicate and we do not develop it here. Briefly, when
the averaging procedure uses a coarse-graining function
w(r(t)), it is possible to transform a time derivative of w
into a space derivative; this involves dr/dt, that is, the
local velocity [14,27].

The geometrical variation term is

B =
Nc

Ntot

〈

Δm

Δt

〉

. (C.5)

Here Nc is the number of links conserved between both
images, that is, the number of terms involved in the aver-
age noted 〈·〉. Most links contribute to equation (C.4),
but each one has a small contribution. If Δt is small
enough, then Δℓ/Δt tends towards dℓ/dt and the cor-
rection Nc/Ntot tends towards 1, so that we obtain equa-
tion (10). Equation (C.2), implies that

B = C + C
t + O(ξ), (C.6)

where C is defined as

C =
Nc

Ntot

〈

ℓ ⊗ Δℓ

Δt

〉

. (C.7)

If we choose ξ = 0, equation (C.6) means that B is twice
the symmetrical part of C:

B = C + C
t. (C.8)

If Δt is small enough, equation (C.7) yields

C =

〈

ℓ ⊗ dℓ

dt

〉

=

⎛

⎜

⎝

〈

X dX
dt

〉 〈

Y dX
dt

〉 〈

Z dX
dt

〉

〈

X dY
dt

〉 〈

Y dY
dt

〉 〈

Z dY
dt

〉

〈

X dZ
dt

〉 〈

Y dZ
dt

〉 〈

Z dZ
dt

〉

⎞

⎟

⎠
. (C.9)

In general, C is not symmetric; its transposed is

C
t =

〈

dℓ

dt
⊗ ℓ

〉

. (C.10)

The topological term is between the last parentheses
in equation (C.3). Note that we can derive its exact pref-
actor:

T =
1

Δt

ΔNa

Ntot

〈ma〉 −
1

Δt

ΔNd

Ntot

〈md〉 , (C.11)

where ΔNd is the number of disappeared links (that ex-
ist at t but no longer at t + Δt); and ΔNa the number
of appeared links (that exist at t + Δt but not yet at t).

In the limit of small Δt, equation (C.11) tends towards
equation (11). In equation (C.11), the number of terms
involved in the average 〈ma〉 (respectively, 〈md〉) is ΔNa

(respectively, ΔNd), which is much smaller than Ntot. This
represents a small number of links, each having a large
contribution to equation (C.4). Thus statistics on T are
always much noisier than that on M or B, and it is ad-
visable to integrate T over a long time τ .

Appendix C.2. Objective time derivatives

This technical section is rather aimed at specialists. It dis-
cusses the different objective derivatives which appear in
the course of this paper, when estimating the time deriva-
tives of M or U. By definition, the objective derivative of
a matrix is invariant after a change in any other rotating
frame of reference. It expresses the fact that M or U are
intrinsic properties of the material. In practice the objec-
tive derivative writes as the sum of a total (Lagrangian)
derivative plus corrections involving the velocity gradient.
In principle there is an infinity of possible objective deriva-
tives. The following sections show that objective deriva-
tives can be selected and calculated for the evolution of
matrices M and U.

Appendix C.2.1. Time evolution of M

In the affine assumption, the geometrical term B of equa-
tion (9) can be rewritten using equations (17, 30, C.8)

B = MW + W
t
M

affine≃ M∇v + ∇v
t
M. (C.12)

Thus, the second term of the right-hand side of equa-
tion (9) can be grouped with its left-hand side, formally
appearing as a Maxwell upper convective tensor derivative
(see e.g. [34])

∇

M=
∂M

∂t
+ v · ∇M − ∇v

t
M − M∇v. (C.13)

Here we have assumed incompressibility to transform ∇ ·
JM ≈ ∇·(v⊗M) into v·∇M. Hence equation (9) appears
as a conservation equation for M

∇

M
affine≃ −T, (C.14)

whose source T is due to topological changes. Note that
the present approach has unambiguously selected the up-
per (rather than the lower, or any other) convective tensor
derivative.

Appendix C.2.2. The small-U assumption

Inverting equation (14), the texture develops as

M = M0 exp (2U) . (C.15)
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In a plastic material such as considered here, the elastic
internal strain is seldom much larger than unity. This is
the case for foams, where deformation of bubbles does not
exceed the size of two bubbles before topological changes
occur, and thus ‖U‖ is bounded. In the case where the
strain U is small everywhere, equation (C.15) becomes

M = M0

[

I + 2U + O
(

U
2
)] small≃ M0 + 2M0U. (C.16)

Let us also assume that the reference configuration is
isotropic, M0 = M0I. Then, equation (C.14) becomes

2M0

(

∇

U −∇v + ∇v
t

2

)

small≃ −T,

or equivalently
∇

U
small≃ V − P, (C.17)

where P = −T/(2M0) is the rate of the plastic strain. This
linear assumption thus simplifies equations (21, C.20).
Again, this selects an upper convective tensor derivative.

Appendix C.2.3. Kinematic equation of U

In Appendix C.2.2, with U small and M0 isotropic, M

commuted with its time derivative. Thus, knowing the
time derivative of M, equation (14) immediately yielded
the time derivative of U. This enabled to eliminate M

from the time evolution of U (Eq. (C.17)).
This is not the case in general. If the eigenvectors of M

change (rotate) with time, M does not necessarily com-
mute with its time derivative. There is no simple relation
between the time derivatives of M and U.

It is thus tedious to obtain the time evolution of U

versus U, instead of versus M. We do not develop here
the calculation. Briefly, we start from equation (C.16). We
differentiate it:

∂M

∂t
= M0

[

I + 2
∂U

∂t
+ O

(

U
2
)

]

. (C.18)

We then inject equation (C.18) in the time evolution of
M (Eq. (9)) at lowest-order terms in U ; then eliminate M

using equation (14)

∂U

∂t
= −∇ · JU + V − ΩU

−UΩ
t + O

(

ΩU
2
)

− P. (C.19)

The term −P appears on the r.h.s. of equation (C.19)
thanks to the factor −1/2 in equation (20). Physically, we
can track it across Appendix C.2.2, back to the factor 2
in equation (C.15), thus in equation (14).

The higher-order terms O(ΩU
2) are often negligible

in a plastic material such as considered here, where the
elastic internal strain is seldom much larger than unity.

On the other hand, the advection term JU and the ro-
tation term ΩU+UΩ

t have symmetries which are differ-
ent from that of V and P. They may thus not necessarily

be negligible. They can be regrouped using the total coro-
tational (“Jaumann” [35]) objective derivative:

DU

Dt
=

∂U

∂t
+ ∇ · JU + ΩU − UΩ, (C.20)

where we recall that Ω
t = −Ω. We thus approximately

obtain equation (21). This result is close to the objective
derivative for the logarithmic Hencky strain (up to a small
correction on the rotation rate), see [36,37].
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