COLLOIDS
AND
SURFACES

ELSEVIER Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 18-26

www.elsevier.com/locate/colsurfa

Dry three-dimensional bubbles: growth-rate, scaling
state and correlations

Stéphane Jurirfe Simon Co®1, Franois Granet*

a Spectrorefrie Physique, UMR 5588 CNRS, Univegsitiseph Fourier, 140 rue de la Physique, BP 87,
38402 Saint Martin d’'Hétes Cedex, France
b Department of Physics, Trinity College, Dublin 2, Ireland

Received 1 October 2004; accepted 21 January 2005
Available online 26 February 2005

Abstract

The energy and shape of three-dimensional clusters of equal-volume bubbles packed around a central bubble are calculated. The resulti
surface areas and bubble pressures provide an improvement upon existing growth laws for three-dimensional bubble clusters. Since a bubbls
growth-rate depends mostly on its number of faces, simulations of coarsening can be accelerated by considering bubble topology rather the
detailed geometry. The coarsening-induced relaxation of a disordered foam towards a scaling state, in which the normalised bubble volum
and face-number distributions remain invariant, can thus be characterised.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction of the growth-rates of individual bubbles, and mechanical
equilibration? (vi) what are the correlations between a bub-
1.1. Goals of this paper ble’s volume, its number of faces, and the properties of its

neighbours? The present paper summarises results and par-
Recent progress in experiments, simulations, and theorytial answers which we have or will present in detail elsewhere
have motivated us to address the main open questions in[1,2].
the coarsening of dry foams: (i) what is the exact growth
law for an individual bubble? (ii) is it sensitive to detailed 1.2. Current state of knowledge
bubble topology and deviation from isotropy? (iii) how do
the distributions of bubble volumes (normalised, throughout A dry foam in three dimensions (3D) reaches mechanical
this paper, by the average volume at a given time) and equilibrium on time-scales of the order of 19-10-3s. This
number of faces vary with time? (iv) do these distributions equilibrium state then further relaxes through gas diffusion;
converge towards an asymptotic state? (v) is this asymptotichere we do not consider drainage and film breakage, which
state always the (previously identified) scaling state, that cause deviations from equilibrium. Typical coarsening time-
is, is it robustly independent of initial conditions, details scales are of the order of 10-%1€)3]; hence at each pointin
time the foam is in mechanical equilibrium. Studies of foam
- coarsening require the accurate calculation of the bubbles’
* Corresponding author. Fax: +33 4 76 63 54 95. surface areas, and also pressure differences between bubbles

E-mail addressesfpams@aber.ac.uk (S. Cox), graner@uijf-grenoble.fr ; ;
(F. Granen) (Eqg. (1)), which in turn depend on the bubble geometry

1 present address: University of Wales Aberystwyth, Institute for Mathe- at €quilibrium. Analytical and experimental results are
matical and Physical Sciences, Aberystwyth SY23 3BZ, UK. notoriously difficult to obtain, as are simulations, which are

0927-7757/% — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.colsurfa.2005.01.015



S. Jurine et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 18-26

19

also time consuming due to the large difference betweenwhere

these time-scaldg]. We can summarise our current level of
understanding as follows.

In two-dimensions (2D), von Neumarf] showed ana-
lytically that the growth-rate of a bubble (of argis directly
proportional to its number of sides,dA /dr o« (n — 6). That
is, it depends upon bubble topology only, irrespective of

the precise geometry. This result, confirmed experimentally

[6,7], considerably simplified studies of 2D coarsening, en-
abling irrelevant geometrical details to be ignored. Experi-
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ments, simulations and analysis finally agreed that the av-yye have introduced a factor of 1/2, to relate the driving force

erage sizéA(t)) increases linearly with timg8] and that a
“scaling state” exists, in which the distributions of normalised
bubble sizes 4/(A(r))) and face-number remain invariant
during coarseningf]. See[8] for a more detailed review of
2D coarsening.

In 3D, the growth-rate of a bubble of volunyeis a sum
over itsi faces[10], each with surface aref, pressure dif-
ferenceAp; and mean curvaturs;
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We use here the convention that the mean curvatutg is
2(1/Ri, + 1/R;,) [1,11,12) whereR;, andR;, are the prin-
cipal radii of curvature. Thus some expressionsGdrelow
differ from those in articles which use a convention without
the factor of 1/710]. With the present convention, the pres-
sure difference\p; istwicethe mean curvatund (multiplied

by the tensiory). We assume that the effective diffusion co-
efficient Dess Of the gas across the bubble walls, and the wall
tensiony = 2yair—wates are constantand are irrelevant to what
follows (we takeDes; = ¥ = 1 withoutloss of generality). As

for grain growth to the mean-curvature of soap films. Mullins
checked, using an experimental distributi®r) of grain
sizes and a conditional distributig? F'|r) of faces, that to

a very good approximatiotryy satisfies the total volume
conservation condition:

(r)
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2
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Finally he showed that, if the grains reached a scaling state,
d(r?)/dr = const.

Grain growth simulations suggested that such a scaling
state does exisf15,16] Glazier [10] checked that the
dependence db was mostly on topology, using simulations
with 4000 grains; his figure 1a is apparently compatible with
Mullins’ prediction but, unaware of it, Glazier suggested
that the deviation from linearity might be due to simulation
artifacts and presented in his figure 1b a linear law similar
to the 2D one. Wakai et al. confirmed numerically Mullins’
expression forG(F), in a detailed papefl7] which the
foam community probably does not quote enoudh.
With a quick scheme to perform wall movement and T1s
without equilibration, they used the Surface Evoly&8]

in 2D, where the area rather than the perimeter of each bub-to simulate a collection of one thousand grains. They found
ble is the significant quantity, here only the volume matters, that this growth-rate, as well as correlations (see below),
not the surface area. Does the 3D growth law depend only onwas the same during the coarsening, and hence did not

the bubble topology? In fact it does not; lithe dispersion

depend on the particular grain distribution. After coarsening,

about such a law was found to be small, expressing the averthe grain distributiorapparentlybecame time-independent

age growth-rate ofF-faced bubbles as a function Bfonly,
G ~ G(F), might be convenient.
The growth ofgrainsin crystals is similar to foam coars-

(evidence is alluded to, but not given), indicating that it had
reached a scaling state with average face nuribee= 13.5
(decreasing from 14 in the initial condition) and apparently

ening, but without the time-scale separation, so that grainscompatible with Mullins’ dr?)/dr = const. The existence
do not equilibratg8]. Grains are thus simpler to simulate and properties of a scaling state for foams may soon be
than foams. Mulling13] assumed tha® was approximately  clarified by recent experiments, such as those using X-ray
a function of the grain face numbé&r only. He assumed  tomography{19], with which thousands of 3D bubbles can
that grains are regular polyhedra and their faces only weakly be investigated over long periods of time.

curved. He calculated their geometrical properties by approx-  Knowing the growth-rate (determined at equilibrium, Eq.
imating each face as a pentagon obeying Plateau’s rules, asfl)) is necessary but not sufficient to understand coarsening,
suming that his results do not depend much on the detailedi.e. the statistical evolution of bubble distributions. Almeida
topology (as was later checked in 2D4] and in 3D[12]). et al. took another point of view and, refining a maximal
He then predicted analytically an expression@oversusF entropy suggestion of RivigR0], studied foams disordered
(which changes sign faF ~ 13.3): enough to maximise their free energy, through competition
between entropy increase under shuffling and energy min-
imisation due to surface tension. Using statistical arguments,

Gua(F) =3 (5 ) 6a(F) 6P
2 they predicted the distribution of sizes and face numbers first

4 )
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in 2D [21], in agreement with experimen®,7], then in 3D 1.3. Ouitline of this paper
[22], apparently in good agreement with the simulation re-
sults of Wakai et al[17]. Our approach is based upon the study of finite clusters
The growth-rate ofbubbles proved more difficult to of bubbles. In small clusters, we get detailed and accurate
investigate. Experimentally, observing enough 3D bubbles measures of the shape and geometrical properties of freely
for a long enough time to extract significant statistics equilibrated bubbles. We can thus precisely determine the
was a difficult challenge which involved years of careful individual growth laws and effects of bubble regularity. We
work [23,24,4,25] Hilgenfeldt et al.[26] used an elegant then use large periodic clusters to collect statistics necessary
approximation to derive an analytical result for ideal bubbles, for histograms and correlations. We present here our prelimi-
later supported by simulations of large foaf2s,28] and nary results for clusters of 512 bubbles, for which the statistics
realizable regular bubblg&1]: should be considered as indicative only, rather than compre-
hensive. Since a bubble’s growth-rate mostly depends on its
number of faces, which we know from our results for small

G ~ Ghilg(F) = 3 [(F —2) tan(ﬂﬂ o3 clusters, we accelerate our coarsening simulations by con-
2173 n sidering only bubble topology rather than detailed geometry.

Q3 (XEN (T We thus characterise the relaxation of a disordered foam to-

x ta (?) (§ - XF) ’ ) wards an asymptotic regime for equilibrated bubbles which

we identify with the scaling state (for grains and bubbles)
found previoushy17].
where xp =2tam!/4sirf(n/nr)—1 and np=
6 — 12/ F is the number of edges per face.

This result was recently improved?], using Mullins’
method [13] without the pentagonal-face approximation, 2.1. Methods
to give an exact result for “isotropic Plateau polyhedra”
(IPP); these are ideal bubbles with spherical-cap faces whose ~ For further details of small clusters sgg. We use the
growth-rate is based upon an interpolation between the re-Surface Evolve{18] to take a central bubble of volurie

alizable, regular, bubble shapes: the tetrahedron, cube andtnd surround it witt bubbles, each with the same voluiie
dodecahedron. This growth-rate is: as shown irFig. 1L We arrange the neighbours as regularly as

possible around the central bubble. Hence, for all valu€s of

2. Small clusters

sin~1(1/4/3R) + cos }(1/3) — (2 /nF)
22 4 (487 /nF) — 57 cos'1(1/3) + 33y — tan(y)) e

2/3
Gipp(F) = 7213 (FnF) ( (%)

1 where regularity is not realizable, the central bubble is as reg-

where R = % (\/83in2(n/nF) -2- cosQr/nF)> and ular as possible (we call such bubbles “quasi-regular”). We
study simple ratios of;/ V to exploreF from 4 to 60, and

sin(y) = % cosfr/n ). BothGippandGhig change signfor  measure the surface ar8aedge-lengti. and growth-rate

F ~ 13.4 and, as we shall show below, are close to Mullins’ Gsjm 0f each central bubble, all accurate to at least four deci-

expressiolil3], suggesting that bubbles and grains have sim- mal places of accuracy. We use an Evolver mesh of quadrat-

ilar growth-rates. ically curved triangular faces with three-fold refinement.

(a) (b) (c)

Fig. 1. Examples of the clusters we consider, with all bubble volumes equal: (a) clugtes df3 outer bubbles (that is, a total 6f+ 1 = 14 bubbles) still
attached; (b) the quasi-regular central bubble, drawn to a different scalefwthh 3 faces (this is a Matzke cg27] with one square, 10 pentagonal and two
hexagonal faces); (c) a central bubble with= 26 faces (all pentagonal or hexagonal) — note its departure from approximate sphericity.
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2.2. Correlation between number of faces and shape Table 1
The growth-rates, averaged over all simulatiofigsg(F) = (Gsim(F)) for
quasi-regular bubbles with few faces,< 12

The shape facto§/ V/3 (normalized surface area) char-
acterises the deviation of a bubble from sphericity. Itis aimost F —Greg(F)

constant for our quasi-regular bubbles, as proved if120) 2 5.632
and 3D[12]. There is a small, non-monotonic fluctuation, so 3 4.655
that in general the value &decreases slightly as the volume g' 2'222
ratio increases. 6 2849

For each value of/;/ V, the physically realizable values 7 2.350
of F are limited. Within the possiblE, the S(F) curves admit 8 1.899
an optimum: a value of which minimises the bubble area. 9 1.506
These optimaF values increase with/V [1]. ﬂ (1)'%28

The dimensionless edge-lengity V/2 of each bubble 7, 0453

lies close to a lmel‘/ Vi3 o ﬁ [11] with _no Qrastlc de- They agree closely with the expression for ideal bubbles,(Eq12] and
pendence oic/ V. The square-root approximation becomes  spow very little dispersion.
slightly worse as the bubbles become larger and gain more
faces, with the maximum deviation occurring at higkdor
increasingV./ V.

We can express both the volume and sAurface area of an Such correlations appear in our study of individual bub-
F-faced bubble in terms of the average lenttfi the edges bles, although we did not specifically include them. They are

around it: /I3 and S/I2. These quantities, which are useful ~€asy to explain qualitatively. Since each bubble has a surface

in the study of foam drainag@,29], both increase strongly ~ area which grows lik&’?/3, its faces have an average surface
with the number of faceB and are insensitive to the size of area going likev?/3/F. Since neighbouring bubbles share a
the neighbouring bubbld4]. common face, they should have a similar value/éf3/F;
thus bubbles with largev tend to have largek.

Such rough mean-field approximations cannot predict in
detail the correlationf21] in actual foams. The simulations
of Wakai et al. on graingL7] have confirmed more detailed
predictiong22] and suggest that a largebubble has smaller-
F neighbours (topological correlations), as in 2D (Aboav—
Weaire laws)3].

Hence simulations of individual bubbles cannot capture

2.3. Correlation between number of faces and
growth-rate

We calculate the instantaneous growth-ré@tg, of each
bubble through the formulél), shown inFig. 2, except at
(for us unobtainable) smalft where the results of Cox and
Fortes[11] for F = 2 and 3 are useful.

For F > 12 our data suggest th&tiig is a better approx-
imation to the average growth-rate th@gy, andGpp. The
dispersion around this average due to differences in the vol-
umes of neighbouring bubbles is less than 1%, emphasising
the quality of the approximation that bubble topology dictates 9 ' ' ' ' ™
the growth-rate.

In a coarsening foam, bubbles with |dware important,
because it is these bubbles that disappear.A~ar12, our
data for quasi-regular bubbles are significantly (up to 10%)
larger than the analytical prediction 6fyjg. Our data are
closely clustered; for smal they lie within 0.1% of the
prediction of Gpyy and Gipp. For F < 12, both Eqs(2)
and Gipp, and our data, are thus probably much more ac-
curate tharGniyg, since the approximation should gradually

clusters.

Growth function G(F)

lose its validity at lowf [26]. Table 1lists the growth-rates o 10 20 30 40 50 60
for quasi-regular bubbles witlk < 12, averaged over all Number of faces F
simulations.

Fig. 2. The rate of change of volume of a bubble whttiaces: the value

Gsim(F) calculated from our simulations of small clusters using @4,
2.4. Correlation between number of faces and volume for volume ratios ofVe/ V = 3(+). 1(x), 2(+). 3(J) and 5@). The data for

bubbles with constant curvatur@) [11], rather than fixed volume, is more

s scattered, but useful for lof. Also shown ar& eg( F) (solid line),Gyun (F)
Real foams often have a distribution of bubble volumes, (short dashes) pp(F) (dotted line) andG g (F) (Iong dashes). The latter

and their topology Correlat_es with their geometry: larger bub- geviates from the data at smallwhile the IPP and Mullins’ formula deviate
bles tend to have more neighbo(8§]. from the data at largEe.

the essence of the physics, and we turn to large, periodic,
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Even within these simplifications, the book-keeping of
T1sis far from trivial, as is the adaptive triangulation of bub-
ble faces with a small cut-of2]. Note that, in contrast to the
small cluster calculations, we use a Surface Evolver mesh of
unrefined plane (linear) triangular faces.

Since we do not completely relax the geometry (curvature,
pressures) in the intervals between T1s, we know that we will
have omitted some T1s (itwould take much longer to compute
all T1s[33]). However, since we specifically want to test the
robustness of the scaling state, a more detailed equilibration
is not necessary.

Our first simulations used a time step small enough to
produce, on average, not more than a single T1 per time step.
We then accelerated our simulations by increasing the time
step to produce exactly one T2 per time step (usiig’) to
predict the time of the next T2), and therefore multiple T1s
(and hence many Surface Evolver iterations), and checked
that the results presented below do not change.

3.2. Correlation between number of faces and shape

Fig. 3. An example of a periodic cluster after 10 coarsening steps, which

have taken the number of bubbles from 512 to 502. Volume, surface area and edge length correlate with the

number of facesHig. 4), generalising the 2D empirical rela-
tions between side number and area (Lewis Law) or perimeter
(Feltham). We observe that these correlations are not specific
to the scaling state, and do not seem to depend on the volume
distribution, compatible with Wakai's resulf$7]. None of
these correlations is strictly linear; the less curved is certainly
that of edge-lengtli versus number of facds(Fig. 4, bot-

tom right). Hence, if an analytical study of foam disorder,
such as that of AImeida et 422], must assume a linear cor-
relation betweer and another quantity, the best empirical
approximation would be to usg(L).

3. Large clusters
3.1. Methods

For further details of large clusters g@¢. We take a pe-
riodic foam with between 128 and 512 bubbles and a large
initial volume distribution Fig. 3), obtained from a Voronoi
construction using Sullivan’s VCS softwaf@l]. This ini-
tial condition is random and locally well-relaxed, like a real
foam, which is at a local mechanical equilibrium. Itis not at a
global equilibrium, and possible residual stresses are not re-
laxed[32] (this is acceptable here, since we investigate only
the topology, in contrast to the detailed and carefully relaxed
simulations of Kraynik et a[27,28)).

To coarsen a large cluster of bubbles, at each time step
we count the number of facds of a bubble and estimate
G from our small cluster calculations, usifigble 1up to
F < 12, and Eq(4) for F > 12. That is, we approxima®

3.3. Correlations between neighbouring bubbles

The sizes of neighbouring bubbles anti-correlate: a bubble
larger than average, with largehas neighbours smaller than
average, with smak. This Aboav—Weaire la84] has been
well characterised in 2D. In 3D, again, there are grain growth
simulationg17].

by Greg(F) defined as: _ If a bubble h_a§ faces and the average number 01_‘ faces of
its neighbours igheighnours We Observe that at each time, the
Greg(F) = (Gsim(F)) . (F < 12), correlation betweetfneighboursx F andF is a straight line

(6) (Fig. 5, left). We would thus like to check whether we can

Greg(F) = Gilg (F). (F=12) generalise the 2D formul@4] by writing:

We ttzwesn adjust theztarget volume of each bubble according - Freighbours= ({F) — a)F + (a(F) + 1) , @)

to V23(t + dr) = V?3(t) + (2/3) dt Greg(F) and partially

equilibrate, by alternating geometrical relaxations which de- where (F) is the average (usually close to 13 or 14) and
crease the surface area (using the “gradient descent” iterationu4 is the second moment of the foanfsdistribution; a
command of the Surface EvolM@d8]) with topological relax- is an unknown parameter. On the right hand side, the first
ations of unstable vertices and edges (“popping” commands).parenthesised term is the slope of the fitand the second term is
A time-step ends when no five-fold vertices nor four-fold the linear intercept. Measuring both leads to two independent
edges remain, and all eigenvalues of the Hessian of energymeasurements af both are equal within measurement errors
are positive. We then re-count the number of faces and iterate(Fig. 5, right).
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Fig. 4. Size-topology correlations in 3D, generalising the 2D “Lewis” and “Feltham” relations. (Top left) The relation between bubble volumebandihum
faces, here plotted at successive times, does not significantly evolve during coarsening. The non-smooth nature of the curves, and thosediediblying, p
indicates that our statistics are insufficient to draw strong conclusions. (Top right) To improve the statistics, we superimpose the sucesssivbetop

left figure (dots = individual bubbles’ values; solid line = average for each valkelmdrs = standard deviation for each valué-pfBubble volume correlates
with the number of faces, but this correlation is not linear. (Bottom left) Same plot for the dimensionless surface area of each bubble. (BoBameipglat)

for the dimensionless edge-length.

3504 =

3004

2504

ghbour>*F

2004

<F_nei

150

100

a (from linear coefficient)

T T T T T T T T T
5 10 15 20 -0.2 0.0 0.2 0.4 0.6

F a (from angular coefficient)

Fig. 5. 3D Aboav-Weaire law. (Left) Correlation between the number of faces of a bubble and of its neighbours for a coarsening foam at a given time; dots =
individual bubble values; solid line = average for each valug;dfars = standard deviation for each valué-pthin grey line = linear fit. (Right) Two different
measures (see text) of the unknown paramafeom the linear fit by assuming E{7); one is plotted vs. the other for the same foam at each time-step. The

solid line is the diagonah(= x).
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A third method, suggested by KraynjB3], measures faces constitutes a curve which parallels the curve for ideal

without requiring any fit: Eq(7) implies bubbles (a trend already apparent, but not quantifig@ap;

1 the shift, shown irFig. 6, left, is roughly equal to one face
a=(F)—— (Fz(Fneighbours— (F)))]. (8) (8F ~ 1). To simulate the growth of alR-faced bubble, we

L could therefore use the approximation:

Thus we obtaima from a direct measure of the difference
between each bubble’s number of face_s qnd that of its n(_e|gh—G ~ (G)p ~ Greg(F — 1). (9)
bours; the results (not shown) are similar to those given
above.

Bubbles with the same face numideare not all alike. A
3.4. Growth-rate of individual bubbles bubble has a detailed topology, quantified by the distribution
of its numbem of sides per face (for instance, a Matzke cell
With small clusters (Sectio®3), we have precisely deter- ~has 1four-sided, 10 five-sided and 2 six-sided faki, 10).
mined the growth-rate eq( F) for regular bubbles; we have ~ On averagén) = 6 — 12/F, due to Euler's theorerj3], so

also estimated the dispersion of the actBaroundG eq(F), all bubbles with the samg have the samex). The stan-
for F > 12. With large clusters, we can increase our under- dard deviatiorsn of the distribution of the number of sides
standiﬁg of this dispersion. of a bubble quantifies its topological disorder. This detailed

The Surface Evolver provides us with each bubble’s pres- 10P0logy changes the growth-rate: at fixédhe growth-rate
sure (see however tleaveatbelow) and each face’s surface G tends to decrease with disordser (Fig. 6, right).
area. We can determine each bubb®'§érom Eq. (1), and The values of pressugethat the Surface Evolver reports
compare it with the valugreq(F) determined for a regu- for unrelaxed structures are not reliable. We have checked the
lar bubble with the same number of faces. Two main results '€sults above by thoroughly relaxing a cluster (at one instant
emerge Fig. 6, left). in time) and comparing the results (data not shown). We

First, the growth-rate does not vary much with bub- find that, at least for foam statistics, our simulations capture
ble shape, confirming earlier findings and explaining why the essence of the physics. KrayiiiR,33] using carefully
Mullins’ and Hilgenfeldt's expressions for symmetric grains T€fined simulations, recently confirmed our findings: the
and bubbles were already good approximations to actual bub-growth-rate of regulaf=-faced bubbles is statistically an
bles[13,26] upper bound for th(_a grovyth—rate of othEffaced bubbles,

Second, actual bubbles wiEhfaces almost all grow (with ~ Put some bubbles violate it. .
a very few exceptions, visible as dots above the dashed line ~ Finally, note thatG might have a small systematic de-
for F = 14 or 20) more slowly than a regular bubble with ~ Pendence on statistical parameters of the stru¢85E for

faces. The average growth-ra@) r of all bubbles withF instance the second momex} of the foam's=-distribution.
L | | L L 4 variance on
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
1 1 1 1 1 1 1 1
a
o -1.2- O a 5
i . g L2 4
d g . o Q
£ -1.37 * a o g
§ A g * A A O =4
2 » g A o 5 -
© L 144 A A $ i B 2
.E g - s At . L10 @
g _a A A R E §
o “ -1.5- A o
S Ke] 15 A . 4 . g * s
2 i
© [9]
C 16 A A s Oog®
5 B, 8 =
S 1.7 o # >
o = m
o o o n
[u] oo
1.8 B 0.6
T T T T T T T T T T 1T T T T T 4 O
4 6 8 10 12 14 16 18 20 22 24 26 0.0 0.2 0.4 0.6 0.8
number of faces o variance on

Fig. 6. Correction due to bubble shape irregularity. (Left) Actual bubblesktites have a growth-ra@ (dots = individual bubbles’ values &; thick solid
line = averag€G) r for each value oF; bars = standard deviation &f for each value oF) which is almost always lower than that of a regular bubble With
faces Greg(F), dashes). Its averagé) r is that of aregular bubble witk F' — 1 faces. (Right) The difference from a regular bubbig'sy( F) increases with the
bubble’s topological disorder, quantified by the variaéie@ its number of sides per face. We plot data for variBtfaced bubbles for two exampleg:= 10
(open squares, left and bottom axes) dnek 18 (closed triangles, right and top axes), rescaling so that simulated quasi-regular hiptdgmbolically
plotted as zero variance) with = 10 (2 four-sided and 8 five-sided faces) and-= 18 (12 five-sided and 6 six-sided faces) coincide.
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100+

number of bubbles

20

0.0 . . . . . . 4

Fig. 7. The number of bubbles vs. time. Comparison between 128-bubble
clusters with an initially exponential volume distribution (UsSiGgeg(F),
closed squares, @, open circles) and an initially peaked distribution (using [
Greg(F), closed circles). Time units correspondgs and the total foam |
volumeNV is an arbitrary constant (E@L)).

3.5. Scaling state

Our simulations determiné-{g. 7) the numbeN of bub-
bles versus time (or equivalently the average volymg)),
since the total foam volume is constant), and the statistical
properties of the bubble distributions during coarsening.

The distributions of normalised bubble volumiég V' (¢)) 1
and numbers of facels relax towards an asymptotic state,
similar to (or at least compatible with) what grain growth
simulations found to be a scaling stf1®,17] The present [
relaxation is robust under the following perturbations. |

First, if we replace the growth-rate of regular bubbles
Greg(F) (used here to speed up simulations, since it requires
only the topology) by each bubble’s growth-r&gbased on
both topology and geometry, Ed.), even though the foam is oL
not fully equilibrated), we obtain curve$(t), shown inFig.

7, which are indistinguishable, except for two T1s involving a
few bubbles around time= 1.0. This validation, performed
with 128 bubbles, allows us to use only the quickest method
to simulate 512 bubbles.

Second, starting the simulation from an initial volume dis- |
tribution which differs greatly from the final one (e.g. an ini-
tially peaked distribution) leads to the same final state, albeit I I
with a time lag corresponding to the duration of the transient |
regime (sed-ig. 8). I

0.35
0.30

4. Conclusions

The structure of a foam in equilibrium minimises its (free)
energy, which is the product of (i) two characteristic quanti-
ties (surface tension and average surface area) and (ii) some
function of shape only. The structure changes due to coars-
ening (in the absence of drainage and film breakage). The
coarsening rate is the product of a diffusion constant (which
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depends on the material parameters, including chemical com-unpublished results and fruitful criticism. Financial support
position), that sets the characteristic time scale, and a functionis gratefully acknowledged from the Ulysses France-Ireland

only of geometry.
Using the Surface Evolver, we have studied both finite
and periodic clusters of bubbles to obtain information about

the structure of three-dimensional foam, the 3D coarsen-

ing law and scaling state. This approach allows us to ac-
curately determinate the growth law for regular bubbles, in
close agreement with the predictions of Hilgenfeldt efld]
and Mullins[13] for bubbles with fewer than 12 faces, and
with the approximation of Hilgenfeldt et d26] for bubbles
with 12 or more faces. In 3D, bubbles are close to regular
(as in 2D), and their growth-rates close to those of regular
bubbles.

We have determined corrections due to the irregularity of

exchange scheme.
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