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Dry three-dimensional bubbles: growth-rate, scaling
state and correlations
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Abstract

The energy and shape of three-dimensional clusters of equal-volume bubbles packed around a central bubble are calculated. The resulting
surface areas and bubble pressures provide an improvement upon existing growth laws for three-dimensional bubble clusters. Since a bubble’s
growth-rate depends mostly on its number of faces, simulations of coarsening can be accelerated by considering bubble topology rather than
d ble volume
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etailed geometry. The coarsening-induced relaxation of a disordered foam towards a scaling state, in which the normalised bub
nd face-number distributions remain invariant, can thus be characterised.
2004 Elsevier B.V. All rights reserved.
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. Introduction

.1. Goals of this paper

Recent progress in experiments, simulations, and theory
ave motivated us to address the main open questions in

he coarsening of dry foams: (i) what is the exact growth
aw for an individual bubble? (ii) is it sensitive to detailed
ubble topology and deviation from isotropy? (iii) how do
he distributions of bubble volumes (normalised, throughout
his paper, by the average volume at a given time) and
umber of faces vary with time? (iv) do these distributions
onverge towards an asymptotic state? (v) is this asymptotic
tate always the (previously identified) scaling state, that
s, is it robustly independent of initial conditions, details
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of the growth-rates of individual bubbles, and mechan
equilibration? (vi) what are the correlations between a
ble’s volume, its number of faces, and the properties o
neighbours? The present paper summarises results an
tial answers which we have or will present in detail elsew
[1,2].

1.2. Current state of knowledge

A dry foam in three dimensions (3D) reaches mecha
equilibrium on time-scales of the order of 10−6–10−3 s. This
equilibrium state then further relaxes through gas diffus
here we do not consider drainage and film breakage, w
cause deviations from equilibrium. Typical coarsening ti
scales are of the order of 10–103 s [3]; hence at each point
time the foam is in mechanical equilibrium. Studies of fo
coarsening require the accurate calculation of the bub
surface areas, and also pressure differences between b
(Eq. (1)), which in turn depend on the bubble geome
at equilibrium. Analytical and experimental results
notoriously difficult to obtain, as are simulations, which

927-7757/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.colsurfa.2005.01.015



S. Jurine et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 18–26 19

also time consuming due to the large difference between
these time-scales[4]. We can summarise our current level of
understanding as follows.

In two-dimensions (2D), von Neumann[5] showed ana-
lytically that the growth-rate of a bubble (of areaA) is directly
proportional to its number of sides,n: dA/dt ∝ (n − 6). That
is, it depends upon bubble topology only, irrespective of
the precise geometry. This result, confirmed experimentally
[6,7], considerably simplified studies of 2D coarsening, en-
abling irrelevant geometrical details to be ignored. Experi-
ments, simulations and analysis finally agreed that the av-
erage size〈A(t)〉 increases linearly with time[8] and that a
“scaling state” exists, in which the distributions of normalised
bubble sizes (A/〈A(t)〉) and face-number remain invariant
during coarsening[9]. See[8] for a more detailed review of
2D coarsening.

In 3D, the growth-rate of a bubble of volumeV is a sum
over itsi faces[10], each with surface areaSi, pressure dif-
ference�pi and mean curvatureHi

G = 3

2Deff

dV 2/3

dt
= −1

2

∑
i

�piSi

γV 1/3 = − 1

V 1/3

∫
i

Hi dSi.

(1)

We use here the convention that the mean curvature isHi =
1(1/R + 1/R ) [1,11,12], whereR andR are the prin-
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where

G1(F ) = π

3
− 2 arctan

[
1.86

(F − 1)1/2

F − 2

]
,

and

G2(F ) = 5.35 F2/3
[

F − 2

2(F − 1)1/2 − 3

8
G1(F )

]−1/3

.

We have introduced a factor of 1/2, to relate the driving force
for grain growth to the mean-curvature of soap films. Mullins
checked, using an experimental distributionP(r) of grain
sizes and a conditional distributionP(F |r) of faces, that to
a very good approximationGMull satisfies the total volume
conservation condition:

〈r〉2

π〈r6〉
∫

drP(r)
∑
F

P(F |r)G(F ) = 0. (3)

Finally he showed that, if the grains reached a scaling state,
d〈r2〉/dt = const.

Grain growth simulations suggested that such a scaling
state does exist[15,16]. Glazier [10] checked that the
dependence ofGwas mostly on topology, using simulations
with 4000 grains; his figure 1a is apparently compatible with
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ipal radii of curvature. Thus some expressions forG below
iffer from those in articles which use a convention with

he factor of 1/2[10]. With the present convention, the pr
ure difference�pi is twicethe mean curvatureH (multiplied
y the tensionγ). We assume that the effective diffusion
fficientDeff of the gas across the bubble walls, and the

ensionγ = 2γair–water, are constant and are irrelevant to w
ollows (we takeDeff = γ = 1 without loss of generality). A
n 2D, where the area rather than the perimeter of each
le is the significant quantity, here only the volume mat
ot the surface area. Does the 3D growth law depend on

he bubble topology? In fact it does not; butif the dispersio
bout such a law was found to be small, expressing the
ge growth-rate ofF-faced bubbles as a function ofF only,
≈ G(F ), might be convenient.
The growth ofgrains in crystals is similar to foam coar

ning, but without the time-scale separation, so that g
o not equilibrate[8]. Grains are thus simpler to simula

han foams. Mullins[13] assumed thatGwas approximatel
function of the grain face numberF only. He assume

hat grains are regular polyhedra and their faces only we
urved. He calculated their geometrical properties by app
mating each face as a pentagon obeying Plateau’s rule
uming that his results do not depend much on the det
opology (as was later checked in 2D[14] and in 3D[12]).
e then predicted analytically an expression forG versusF

which changes sign forF ≈ 13.3):

Mull (F ) = 1

2

(
3

4π

)1/3

G1(F ) G2(F ), (2)
-

ullins’ prediction but, unaware of it, Glazier sugges
hat the deviation from linearity might be due to simulat
rtifacts and presented in his figure 1b a linear law sim

o the 2D one. Wakai et al. confirmed numerically Mulli
xpression forG(F ), in a detailed paper[17] which the
oam community probably does not quote enough[4].

ith a quick scheme to perform wall movement and
ithout equilibration, they used the Surface Evolver[18]

o simulate a collection of one thousand grains. They fo
hat this growth-rate, as well as correlations (see be
as the same during the coarsening, and hence di
epend on the particular grain distribution. After coarsen

he grain distributionapparentlybecame time-independe
evidence is alluded to, but not given), indicating that it
eached a scaling state with average face number〈F 〉 = 13.5
decreasing from 14 in the initial condition) and appare
ompatible with Mullins’ d〈r2〉/dt = const. The existenc
nd properties of a scaling state for foams may soo
larified by recent experiments, such as those using X
omography[19], with which thousands of 3D bubbles c
e investigated over long periods of time.

Knowing the growth-rate (determined at equilibrium,
1)) is necessary but not sufficient to understand coarse
.e. the statistical evolution of bubble distributions. Alme
t al. took another point of view and, refining a maxim
ntropy suggestion of Rivier[20], studied foams disorder
nough to maximise their free energy, through compet
etween entropy increase under shuffling and energy

misation due to surface tension. Using statistical argum
hey predicted the distribution of sizes and face numbers



20 S. Jurine et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 18–26

in 2D [21], in agreement with experiments[6,7], then in 3D
[22], apparently in good agreement with the simulation re-
sults of Wakai et al.[17].

The growth-rate ofbubbles proved more difficult to
investigate. Experimentally, observing enough 3D bubbles
for a long enough time to extract significant statistics
was a difficult challenge which involved years of careful
work [23,24,4,25]. Hilgenfeldt et al.[26] used an elegant
approximation to derive an analytical result for ideal bubbles,
later supported by simulations of large foams[27,28] and
realizable regular bubbles[11]:

G ≈ GHilg(F ) = 3

21/3

[
(F − 2) tan

(
π

nF

)]2/3

× tan1/3
(χF

2

) (π

3
− χF

)
, (4)

where χF = 2 tan−1
√

4 sin2(π/nF ) − 1 and nF =
6 − 12/F is the number of edges per face.

This result was recently improved[12], using Mullins’
method [13] without the pentagonal-face approximation,
to give an exact result for “isotropic Plateau polyhedra”
(IPP); these are ideal bubbles with spherical-cap faces whose
growth-rate is based upon an interpolation between the re-
a e and
d

G
(1/3)

1/3) +

w

s r
F ins’
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i

1.3. Outline of this paper

Our approach is based upon the study of finite clusters
of bubbles. In small clusters, we get detailed and accurate
measures of the shape and geometrical properties of freely
equilibrated bubbles. We can thus precisely determine the
individual growth laws and effects of bubble regularity. We
then use large periodic clusters to collect statistics necessary
for histograms and correlations. We present here our prelimi-
nary results for clusters of 512 bubbles, for which the statistics
should be considered as indicative only, rather than compre-
hensive. Since a bubble’s growth-rate mostly depends on its
number of faces, which we know from our results for small
clusters, we accelerate our coarsening simulations by con-
sidering only bubble topology rather than detailed geometry.
We thus characterise the relaxation of a disordered foam to-
wards an asymptotic regime for equilibrated bubbles which
we identify with the scaling state (for grains and bubbles)
found previously[17].

2. Small clusters

2.1. Methods

For further details of small clusters see[1]. We use the
Surface Evolver[18] to take a central bubble of volumeVc
a
a y as
p of

w reg-
u . We
s
m e
G eci-
m drat-
i

F equal l
a le, witF = two
h or hexa
lizable, regular, bubble shapes: the tetrahedron, cub
odecahedron. This growth-rate is:

IPP(F ) = 721/3
(

FnF

)2/3 sin−1(1/
√

3R) + cos−1

(
2
√

2 + (48π/nF ) − 57 cos−1(

here R = 3
2

(√
8 sin2(π/nF ) − 2 − cos(π/nF )

)−1

and

in(y) = 2√
3

cos(π/nF ). BothGIPPandGHilg change sign fo
≈ 13.4 and, as we shall show below, are close to Mull

xpression[13], suggesting that bubbles and grains have
lar growth-rates.

ig. 1. Examples of the clusters we consider, with all bubble volumes
ttached; (b) the quasi-regular central bubble, drawn to a different sca
exagonal faces); (c) a central bubble withF = 26 faces (all pentagonal
− (2π/nF )

33y − tan(y)
)1/3 (5)

nd surround it withF bubbles, each with the same volumeV,
s shown inFig. 1. We arrange the neighbours as regularl
ossible around the central bubble. Hence, for all valuesF

here regularity is not realizable, the central bubble is as
lar as possible (we call such bubbles “quasi-regular”)
tudy simple ratios ofVc/V to exploreF from 4 to 60, and
easure the surface areaS, edge-lengthL and growth-rat
sim of each central bubble, all accurate to at least four d
al places of accuracy. We use an Evolver mesh of qua

cally curved triangular faces with three-fold refinement.

: (a) cluster ofF = 13 outer bubbles (that is, a total ofF + 1 = 14 bubbles) stil
h13 faces (this is a Matzke cell[27] with one square, 10 pentagonal and
gonal) — note its departure from approximate sphericity.
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2.2. Correlation between number of faces and shape

The shape factorS/V 2/3 (normalized surface area) char-
acterises the deviation of a bubble from sphericity. It is almost
constant for our quasi-regular bubbles, as proved in 2D[14]
and 3D[12]. There is a small, non-monotonic fluctuation, so
that in general the value ofSdecreases slightly as the volume
ratio increases.

For each value ofVc/V , the physically realizable values
of F are limited. Within the possibleF, theS(F ) curves admit
an optimum: a value ofF which minimises the bubble area.
These optimalF values increase withVc/V [1].

The dimensionless edge-lengthL/V 1/3 of each bubble
lies close to a lineL/V 1/3 ∝ √

F [11] with no drastic de-
pendence onVc/V . The square-root approximation becomes
slightly worse as the bubbles become larger and gain more
faces, with the maximum deviation occurring at higherF for
increasingVc/V .

We can express both the volume and surface area of an
F -faced bubble in terms of the average lengthl̂ of the edges
around it:V/l̂3 andS/l̂2. These quantities, which are useful
in the study of foam drainage[3,29], both increase strongly
with the number of facesF and are insensitive to the size of
the neighbouring bubbles[1].
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Table 1
The growth-rates, averaged over all simulations,Greg(F ) = 〈Gsim(F )〉 for
quasi-regular bubbles with few faces,F ≤ 12

F −Greg(F )

2 5.632
3 4.655
4 3.967
5 3.326
6 2.849
7 2.350
8 1.899
9 1.506

10 1.130
11 0.760
12 0.453

They agree closely with the expression for ideal bubbles, Eq.(5) [12] and
show very little dispersion.

Such correlations appear in our study of individual bub-
bles, although we did not specifically include them. They are
easy to explain qualitatively. Since each bubble has a surface
area which grows likeV 2/3, its faces have an average surface
area going likeV 2/3/F . Since neighbouring bubbles share a
common face, they should have a similar value ofV 2/3/F ;
thus bubbles with largerV tend to have largerF.

Such rough mean-field approximations cannot predict in
detail the correlations[21] in actual foams. The simulations
of Wakai et al. on grains[17] have confirmed more detailed
predictions[22] and suggest that a large-Fbubble has smaller-
F neighbours (topological correlations), as in 2D (Aboav–
Weaire laws)[3].

Hence simulations of individual bubbles cannot capture
the essence of the physics, and we turn to large, periodic,
clusters.

F e
G

f r
b re
s
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d te
f

.3. Correlation between number of faces and
rowth-rate

We calculate the instantaneous growth-rateGsim of each
ubble through the formula(1), shown inFig. 2, except a
for us unobtainable) smallF where the results of Cox an
ortes[11] for F = 2 and 3 are useful.

ForF ≥ 12 our data suggest thatGHilg is a better approx
mation to the average growth-rate thanGMull andGIPP. The
ispersion around this average due to differences in the
mes of neighbouring bubbles is less than 1%, emphas

he quality of the approximation that bubble topology dict
he growth-rate.

In a coarsening foam, bubbles with lowF are important
ecause it is these bubbles that disappear. ForF < 12, our
ata for quasi-regular bubbles are significantly (up to 1

arger than the analytical prediction ofGHilg. Our data ar
losely clustered; for smallF they lie within 0.1% of the
rediction ofGMull and GIPP. For F < 12, both Eqs.(2)
ndGIPP, and our data, are thus probably much more
urate thanGHilg, since the approximation should gradua
ose its validity at lowF [26]. Table 1lists the growth-rate
or quasi-regular bubbles withF ≤ 12, averaged over a
imulations.

.4. Correlation between number of faces and volume

Real foams often have a distribution of bubble volum
nd their topology correlates with their geometry: larger b
les tend to have more neighbours[30].
ig. 2. The rate of change of volume of a bubble withF faces: the valu

sim(F ) calculated from our simulations of small clusters using Eq.(1),
or volume ratios ofVc/V = 1

2(+), 1(×), 2(∗), 3(�) and 5(�). The data fo
ubbles with constant curvature (�) [11], rather than fixed volume, is mo
cattered, but useful for lowF. Also shown areGreg(F ) (solid line),GMull (F )
short dashes),GIPP(F ) (dotted line) andGHilg (F ) (long dashes). The latt
eviates from the data at smallF, while the IPP and Mullins’ formula devia

rom the data at largeF.
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Fig. 3. An example of a periodic cluster after 10 coarsening steps, which
have taken the number of bubbles from 512 to 502.

3. Large clusters

3.1. Methods

For further details of large clusters see[2]. We take a pe-
riodic foam with between 128 and 512 bubbles and a large
initial volume distribution (Fig. 3), obtained from a Voronoi
construction using Sullivan’s VCS software[31]. This ini-
tial condition is random and locally well-relaxed, like a real
foam, which is at a local mechanical equilibrium. It is not at a
global equilibrium, and possible residual stresses are not re-
laxed[32] (this is acceptable here, since we investigate only
the topology, in contrast to the detailed and carefully relaxed
simulations of Kraynik et al.[27,28]).

To coarsen a large cluster of bubbles, at each time step
we count the number of facesF of a bubble and estimate
G from our small cluster calculations, usingTable 1up to
F < 12, and Eq.(4) for F ≥ 12. That is, we approximateG
by Greg(F ) defined as:

Greg(F ) = 〈Gsim(F )〉F , (F < 12),

Greg(F ) = GHilg(F ), (F ≥ 12).
(6)

We then adjust the target volume of each bubble according
to V 2/3(t + dt) = V 2/3(t) + (2/3) dt Greg(F ) and partially
e de-
c ration
c -
a nds).
A old
e nergy
a rate.

Even within these simplifications, the book-keeping of
T1s is far from trivial, as is the adaptive triangulation of bub-
ble faces with a small cut-off[2]. Note that, in contrast to the
small cluster calculations, we use a Surface Evolver mesh of
unrefined plane (linear) triangular faces.

Since we do not completely relax the geometry (curvature,
pressures) in the intervals between T1s, we know that we will
have omitted some T1s (it would take much longer to compute
all T1s[33]). However, since we specifically want to test the
robustness of the scaling state, a more detailed equilibration
is not necessary.

Our first simulations used a time step small enough to
produce, on average, not more than a single T1 per time step.
We then accelerated our simulations by increasing the time
step to produce exactly one T2 per time step (usingG(F ) to
predict the time of the next T2), and therefore multiple T1s
(and hence many Surface Evolver iterations), and checked
that the results presented below do not change.

3.2. Correlation between number of faces and shape

Volume, surface area and edge length correlate with the
number of faces (Fig. 4), generalising the 2D empirical rela-
tions between side number and area (Lewis Law) or perimeter
(Feltham). We observe that these correlations are not specific
t lume
d
t ainly
t
t er,
s r-
r ical
a

3

bble
l an
a n
w wth
s

s of
i the
c
( an
g

F

w and
µ

i first
p erm is
t dent
m ors
(

quilibrate, by alternating geometrical relaxations which
rease the surface area (using the “gradient descent” ite
ommand of the Surface Evolver[18]) with topological relax
tions of unstable vertices and edges (“popping” comma
time-step ends when no five-fold vertices nor four-f

dges remain, and all eigenvalues of the Hessian of e
re positive. We then re-count the number of faces and ite
o the scaling state, and do not seem to depend on the vo
istribution, compatible with Wakai’s results[17]. None of

hese correlations is strictly linear; the less curved is cert
hat of edge-lengthL versus number of facesF (Fig. 4, bot-
om right). Hence, if an analytical study of foam disord
uch as that of Almeida et al.[22], must assume a linear co
elation betweenF and another quantity, the best empir
pproximation would be to useF (L).

.3. Correlations between neighbouring bubbles

The sizes of neighbouring bubbles anti-correlate: a bu
arger than average, with largeF, has neighbours smaller th
verage, with smallF. This Aboav–Weaire law[34] has bee
ell characterised in 2D. In 3D, again, there are grain gro
imulations[17].

If a bubble hasF faces and the average number of face
ts neighbours isFneighbours, we observe that at each time,
orrelation betweenFneighbours× F andF is a straight line
Fig. 5, left). We would thus like to check whether we c
eneralise the 2D formula[34] by writing:

× Fneighbours=
(〈F 〉 − a)F + (a〈F 〉 + µF

2

)
, (7)

here 〈F 〉 is the average (usually close to 13 or 14)
F
2 is the second moment of the foam’sF-distribution; a

s an unknown parameter. On the right hand side, the
arenthesised term is the slope of the fit and the second t

he linear intercept. Measuring both leads to two indepen
easurements ofa; both are equal within measurement err

Fig. 5, right).
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Fig. 4. Size-topology correlations in 3D, generalising the 2D “Lewis” and “Feltham” relations. (Top left) The relation between bubble volume and number of
faces, here plotted at successive times, does not significantly evolve during coarsening. The non-smooth nature of the curves, and those following, probably
indicates that our statistics are insufficient to draw strong conclusions. (Top right) To improve the statistics, we superimpose the successive curves of the top
left figure (dots = individual bubbles’ values; solid line = average for each value ofF; bars = standard deviation for each value ofF). Bubble volume correlates
with the number of faces, but this correlation is not linear. (Bottom left) Same plot for the dimensionless surface area of each bubble. (Bottom right)Same plot
for the dimensionless edge-length.

Fig. 5. 3D Aboav–Weaire law. (Left) Correlation between the number of faces of a bubble and of its neighbours for a coarsening foam at a given time; dots =
individual bubble values; solid line = average for each value ofF; bars = standard deviation for each value ofF; thin grey line = linear fit. (Right) Two different
measures (see text) of the unknown parametera from the linear fit by assuming Eq.(7); one is plotted vs. the other for the same foam at each time-step. The
solid line is the diagonal (y = x).
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A third method, suggested by Kraynik[33], measuresa
without requiring any fit: Eq.(7) implies

a = 〈F 〉 − 1

µF
2

[〈F2(Fneighbours− 〈F 〉)〉]. (8)

Thus we obtaina from a direct measure of the difference
between each bubble’s number of faces and that of its neigh-
bours; the results (not shown) are similar to those given
above.

3.4. Growth-rate of individual bubbles

With small clusters (Section2.3), we have precisely deter-
mined the growth-rateGreg(F ) for regular bubbles; we have
also estimated the dispersion of the actualGaroundGreg(F ),
for F ≥ 12. With large clusters, we can increase our under-
standing of this dispersion.

The Surface Evolver provides us with each bubble’s pres-
sure (see however thecaveatbelow) and each face’s surface
area. We can determine each bubble’sG from Eq. (1), and
compare it with the valueGreg(F ) determined for a regu-
lar bubble with the same number of faces. Two main results
emerge (Fig. 6, left).

First, the growth-rate does not vary much with bub-
ble shape, confirming earlier findings and explaining why
M ins
a l bub-
b

h
a d line
f h
f

faces constitutes a curve which parallels the curve for ideal
bubbles (a trend already apparent, but not quantified, in[26]);
the shift, shown inFig. 6, left, is roughly equal to one face
(δF ≈ 1). To simulate the growth of anF-faced bubble, we
could therefore use the approximation:

G ≈ 〈G〉F ≈ Greg(F − 1). (9)

Bubbles with the same face numberF are not all alike. A
bubble has a detailed topology, quantified by the distribution
of its numbern of sides per face (for instance, a Matzke cell
has 1 four-sided, 10 five-sided and 2 six-sided faces,Fig. 1b).
On average〈n〉 = 6 − 12/F , due to Euler’s theorem[3], so
all bubbles with the sameF have the same〈n〉. The stan-
dard deviationδn of the distribution of the number of sides
of a bubble quantifies its topological disorder. This detailed
topology changes the growth-rate: at fixedF, the growth-rate
G tends to decrease with disorderδn (Fig. 6, right).

The values of pressurep that the Surface Evolver reports
for unrelaxed structures are not reliable. We have checked the
results above by thoroughly relaxing a cluster (at one instant
in time) and comparing the results (data not shown). We
find that, at least for foam statistics, our simulations capture
the essence of the physics. Kraynik[12,33], using carefully
refined simulations, recently confirmed our findings: the
g an
u ,
b

e-
p
i

F es withF fac
l each va th
f − 1 fac e
b f sides
( t and to
p s) andF =
ullins’ and Hilgenfeldt’s expressions for symmetric gra
nd bubbles were already good approximations to actua
les[13,26].

Second, actual bubbles withF faces almost all grow (wit
very few exceptions, visible as dots above the dashe

or F = 14 or 20) more slowly than a regular bubble witF
aces. The average growth-rate〈G〉F of all bubbles withF

ig. 6. Correction due to bubble shape irregularity. (Left) Actual bubbl
ine = average〈G〉F for each value ofF; bars = standard deviation ofG for
aces (Greg(F ), dashes). Its average〈G〉F is that of a regular bubble with≈F

ubble’s topological disorder, quantified by the varianceδn in its number o
open squares, left and bottom axes) andF = 18 (closed triangles, righ
lotted as zero variance) withF = 10 (2 four-sided and 8 five-sided face
rowth-rate of regularF-faced bubbles is statistically
pper bound for the growth-rate of otherF-faced bubbles
ut some bubbles violate it.

Finally, note thatG might have a small systematic d
endence on statistical parameters of the structure[35], for

nstance the second momentµF
2 of the foam’sF-distribution.

es have a growth-rateG (dots = individual bubbles’ values ofG; thick solid
lue ofF) which is almost always lower than that of a regular bubble wiF

es. (Right) The difference from a regular bubble’sGreg(F ) increases with th
per face. We plot data for variousF-faced bubbles for two examples:F = 10
p axes), rescaling so that simulated quasi-regular bubbles[1] (symbolically
18 (12 five-sided and 6 six-sided faces) coincide.
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Fig. 7. The number of bubbles vs. time. Comparison between 128-bubble
clusters with an initially exponential volume distribution (usingGreg(F ),
closed squares, orG, open circles) and an initially peaked distribution (using
Greg(F ), closed circles). Time units correspond toDeff and the total foam
volumeNV is an arbitrary constant (Eq.(1)).

3.5. Scaling state

Our simulations determine (Fig. 7) the numberN of bub-
bles versus time (or equivalently the average volume〈V (t)〉,
since the total foam volume is constant), and the statistical
properties of the bubble distributions during coarsening.

The distributions of normalised bubble volumesV/〈V (t)〉
and numbers of facesF relax towards an asymptotic state,
similar to (or at least compatible with) what grain growth
simulations found to be a scaling state[15,17]. The present
relaxation is robust under the following perturbations.

First, if we replace the growth-rate of regular bubbles
Greg(F ) (used here to speed up simulations, since it requires
only the topology) by each bubble’s growth-rateG (based on
both topology and geometry, Eq.(1), even though the foam is
not fully equilibrated), we obtain curvesN(t), shown inFig.
7, which are indistinguishable, except for two T1s involving a
few bubbles around timet = 1.0. This validation, performed
with 128 bubbles, allows us to use only the quickest method
to simulate 512 bubbles.

Second, starting the simulation from an initial volume dis-
tribution which differs greatly from the final one (e.g. an ini-
tially peaked distribution) leads to the same final state, albeit
with a time lag corresponding to the duration of the transient
regime (seeFig. 8).
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. Conclusions

The structure of a foam in equilibrium minimises its (fr
nergy, which is the product of (i) two characteristic qua

ies (surface tension and average surface area) and (ii)
unction of shape only. The structure changes due to c
ning (in the absence of drainage and film breakage)
oarsening rate is the product of a diffusion constant (w
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depends on the material parameters, including chemical com-
position), that sets the characteristic time scale, and a function
only of geometry.

Using the Surface Evolver, we have studied both finite
and periodic clusters of bubbles to obtain information about
the structure of three-dimensional foam, the 3D coarsen-
ing law and scaling state. This approach allows us to ac-
curately determinate the growth law for regular bubbles, in
close agreement with the predictions of Hilgenfeldt et al.[12]
and Mullins[13] for bubbles with fewer than 12 faces, and
with the approximation of Hilgenfeldt et al.[26] for bubbles
with 12 or more faces. In 3D, bubbles are close to regular
(as in 2D), and their growth-rates close to those of regular
bubbles.

We have determined corrections due to the irregularity of
actual bubbles. The statistical properties of disordered foams
are robust with respect to approximations: for instance, we
retain the essence of the physics if we replace the bubbles’
growth-rate by an average which depends only on the number
of faces. Conversely, to measure detailed bubble properties,
we suggest that the best-controlled approximation uses the
exact result for regular bubbles with one less face. For fixed
face number, the growth-rate tends to decrease with increas-
ing topological disorder.

We have also obtained theoptimalbubble shapes and sur-
face areas for given bubble volumes, correlations between
f wis-
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