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Abstract. The plastic ”ow of a foam results from bubble rearrangements. We study their occurre nce in
experiments where a foam is forced to ”ow in 2D: around an obstacle; through a narrow hole; or sheared
between rotating disks. We describe their orientation and frequency using a topological matrix de“ned in
the companion paper (F. Graner, B. Dollet, C. Raufaste, and P. Marmottant, this issue, 25 (2008) DOI
10.1140/epje/i2007-10298-8), which links them with continuous plasticity at large scale. We then suggest a
phenomenological equation to predict the plastic strain rate: its orien tation is determined from the foam•s
local elastic strain; and its rate is determined from the foam•s local elongation rate. We obtain a good
agreement with statistical measurements. This enables us to describe the foam as a continuous medium
with ”uid, elastic and plastic properties. We derive its constitutive eq uation, then test several of its terms
and predictions.

PACS. 83.80.Iz Emulsions and foams … 83.10.Bb Kinematics of deformation and ”ow … 62.20.F- Defor-
mation and plasticity

1 Introduction

A liquid foam, made of gas bubbles surrounded by liquid
walls (Fig. 1), is elastic for small strain, plastic for large
strain, and ”ows at large strain rates [1…3]. This complex
mechanical behaviour is exploited in numerous applica-
tions, such as ore separation, drilling and extraction of
oil, food or cosmetic industry [1]. It is not yet fully under-
stood [3]. Existing models of complex ”uids include Ol-
droyd•s visco-elasticity or Bingham•s visco-plasticity [4,5].
Complete models tend to unify elastic, plastic and ”uid
behaviour [6…12].

Most models describing the foam as a continuous mate-
rial have to make an assumption to describe phenomeno-
logically the elastic-to-plastic transition, and the plastic
strain rate. Here, we want to link it directly with the ob-
servation of foam•s individual components, the bubbles. In
fact, bubbles play for foams the same role as microscopi-
cal components play for other complex ”uids, but have the
advantage of being easily observable. The individual plas-
tic events [13] in foams are the topological rearrangements
(neighbour swapping, also called •T1 processesŽ [1]). Pre-
dicting the occurrence and properties of T1•s, and charac-

a e-mail: philippe.marmottant@ujf-grenoble.fr
b Present address: Physics of Geological Processes, Univer-

sity of Oslo, Sem Selands vei 24 NO-0316 Oslo, Norway.

terizing their impact at large scale, is thus a crucial step
to describe the foam as a continuous material.

Section 2 lists the ingredients we use. We start from a
scalar model of the foam plasticity and dynamics, which
predicts correctly its rheological behaviour [9]. We then
include robust statistical tools de“ned in the companion
paper [14], which provides: i) a link between local (bub-
ble) behaviour and global (foam) measurements of elastic,
plastic and ”uid behaviours; ii) matrix (rather than scalar)
measurements of these quantities, that is, including direc-
tion and magnitude of anisotropy; iii) space dependence of
these measurements (heterogeneous deformation instead
of homogeneous).

Section 3 then presents a kinematic equation to de-
scribe the elastic-to-plastic transition, which is the main
point of this paper. It is an analytical prediction of the
plastic strain rate, based on the elastic strain and the to-
tal strain rate.

Section 4 tests its predictions on experiments in dif-
ferent foam ”ows. The relationship between experimental
data agrees with our analytical prediction. Moreover, we
correctly predict the frequency and spatial distribution of
T1•s, which di�ers much from the spatial distribution of
both elastic strain and total strain rate.

Section 5 concludes by discussing these “ndings and
possible applications to other systems. It proposes a dy-
namic constitutive equation for foam rheology, relating
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Fig. 1. Experimental 2D ”ows of a foam: top view, here ”ow
from left to right. (a) Wet foam (between glass and water) ”ow-
ing around an obstacle, picture from B. Dollet [15,16]; “eld of
view 15 cm× 10 cm. (b) Dry foam (between parallel glass plates)
”owing around an obstacle, picture from C. Raufaste [14]; “eld
of view 13.3 cm × 10 cm. (c) Moderately dry foam (between
parallel plexiglass plates) ”owing through a narrow hole, pic-
ture from M. Asipauskas [17]; “eld of view 7 .5 cm × 10 cm.
(d) Wet foam (between parallel glass plates) sheared between
two concentric wheels with tooth-shaped boundaries to prevent
slipping; the rotating inner wheel is visible at the bottom, the
“xed outer wheel is visible at the top [18]. Arrows indicate the
measured velocity “eld; “eld of view 12 .5 cm× 11.5 cm. Liquid
fractions are approximately estimated as: (a) 4 · 10Š 2 [19], (b)
2 · 10Š 4 [20], (c) 10Š 2 [17], (d) 5 · 10Š 2 [18].

stresses to applied strains, with the introduction of a vis-
cosity. This closes the complete set of equations describing
a foam, leading to testable predictions.

2 Ingredients of model and tests

2.1 Continuous description of plasticity with scalar
strains

This section summarizes the model presented in [9] for
homogeneousstrains, described by a simplescalar. This
situation arises when considering the strain in a rheome-
ter, where strain is induced by the displacement of a plate
with respect to the other, and characterized by a scalar.

The total applied strain rate (or symmetrised veloc-
ity gradient) contributes in part to load the elastic strain
(bubbles deform) and to the plastic strain rate (bubbles
move relatively to each other). The total applied strain
rate is the sum of an internal elastic strain rate and the
irreversible plastic strain rate:

�� tot =
d� el

dt
+ �� pl , (1)

where we used a di�erent notation for the time derivative
of � el , to emphasise that it is an internal state variable of
the material.

A kinematic equation describes how the total strain
rate is shared between change of elastic strain and plastic
strain. For slowly sheared foams plasticity occurs if� el and
�� tot have the same sign (loading of the material), and is
zero otherwise (unloading) [9]:

if � el �� tot > 0, �� pl = h(� el) �� tot ,
if � el �� tot � 0, �� pl = 0 . (2)

The plasticity fraction, or yield function, h, is zero at zero
strain (elasticity only, no plasticity), and reaches 1 (plas-
ticity only, no elasticity) at the yield strain, which is a
material-dependent parameter. A smooth onset of plas-
ticity can be described by a plasticity function h which
continuously interpolates between the value 0 (completely
elastic) and 1 (completely plastic) [9].

Equation (2) closes the system of kinematic equations
describing a foam. Indeed from equations (1, 2), we can
write

d� el / dt = �� tot Š h(� el) ��, (3)

which can be integrated, knowing the applied strain rate,
to calculate the internal elastic strain.

The scalar constitutive equation [9] proposed a total
stress that is the sum of the elastic and viscous stress. It
was simple to assume a linear relation

� = G � el + � ��, (4)

with G an elastic modulus and with � a viscosity.
This model is thus based on three material-dependent

parameters; an elastic coe�cient, a viscous one, and a
plastic yield strain. It successfully predicted foam dynam-
ical properties. In oscillatory regime, it predicts storage
and loss moduli G� , G�� . In stationary regime, it resem-
bles a Bingham model. It also enables to predict transient
behaviours and creep [9]. If needed, it is possible in prin-
ciple to re“ne it, by introducing some non-linearities in
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Fig. 2. Sequence of images of a T1 event in a measurement
box: (a) shows the network of links � (thin lines) joining neigh-
bour bubble centers superimposed on snapshots extracted from
a dry foam [14], and the disappearing link ( � d , dashes), (b) the
intermediate stage, and (c) the appearing link ( � a , thick line).

equation (4); for instance by replacing �� with a power
law, �� n (in which case, in a stationary regime it looks
like a Herschel-Buckley model); or by havingG or � not
constant.

2.2 Direct measurement of strain, rearrangements and
”ow

This section summarizes the parts of the companion pa-
per [14] which are used in what follows. The matrices�� tot ,
� el , and �� pl generalise the total, elastic and plastic strains
in equation (1), and are function of the position in the
material. They are measured directly using the statisti-
cal strains based on the bubble network:U , V and P,
respectively. They are all obtained from the texture ten-
sor M � � � � � � , based on links � between each pair of
neighbouring bubble centers (see Fig. 2). Coarse-graining
procedures yield a continuous description of the foam.

The internal strain is de“ned from the relative defor-
mation of bubbles with respect to the deformation at rest
M 0, as

U �
1
2

(log M Š logM 0) . (5)

The topological rearrangment rate is de“ned from the
discontinuous deformation of the network after each rear-
rangements. It describes the time derivative ofU due to
T1 events

P � f
1
2

(� � d � � d � Š � � a � � a � ) M Š 1 + sym

= f � U T1 , (6)

f being the frequency of rearrangments in an observation
box containing one link, and � U T1 is the sudden drop
in internal strain associated with a T1. It is computed
from the disappearing links � d and appearing links� a (see
Fig. 2).

The rate of strain is de“ned from the continuous de-
formation of the network. It describes the time derivative
of U between T1 events as

V �
W + W t

2
,

where

W = M Š 1
�

� �
d�
dt

�
. (7)

2.3 Experimental data

Horizontal monolayers of bubbles (Fig. 1) o�er a unique
possibility to observe all bubbles: their deformations, re-
arrangements and velocity. They are quasi-2D foams, be-
cause they are not strictly 2D. However, their ”ow is truly
2D: it has no vertical component. A large set of detailed
data is available; bubbles act as convenient tracers of elas-
tic strain, rearrangements and velocity [14,17,21].

We reanalyse experimental data already published and
courteously provided to us by the authors. For details of
the materials and methods, see the original publications.
In these four set-ups, coalescence and ageing are below
detection level. We assume that the gas and liquid con-
stituents of the foam move together, at the same velocity
(no drainage).

In Figure 1a, the foam is con“ned between the sur-
face of water and a horizontal plate of glass. Bubbles are
rather round, due to the high e�ective liquid fraction [19].
Thus the region where T1•s occur is larger, more widely
distributed around the obstacle (compare Figs. 12 and 14
below). There are thus more regions of the ”ow where
statistics are signi“cant. This is why we use this experi-
ment for the most detailed quantitative tests (Sect. 4.1).
In Figures 1b-d, the foam is con“ned between two hor-
izontal plates of glass, and drier liquid fractions can be
obtained.

In Figures 1a-c, the channel (only partly visible) is
horizontal, its length is 1 m, its width 10 cm, its thickness
3.5, 3 and 0.5 mm, respectively. It is “lled with bubbles
obtained by steadily blowing nitrogen in water with com-
mercial dishwashing liquid. The bubbles are monodisperse
and form a disordered monolayer which reaches the free
exit at the end of the channel. The resulting steady plug
”ow, well in the quasistatic regime [15], is made hetereo-
geneous by inserting a 3 cm diameter obstacle (Fig. 1a,b)
or a constriction [17] (Fig. 1c). Thus di�erent regions si-
multaneously display di�erent velocity gradients, elastic
strains, and rearrangement rates, and allow to sample si-
multaneously many di�erent conditions.

In Figure 1d the foam is in a 2D circular Couette geom-
etry [18]. Brie”y, the 2 mm thick foam monolayer is formed
between two concentric disks (only partly visible) with
semicircular teeth of radius 1.2 mm to match the bubble
diameter, thus anchoring bubbles at the walls. The outer
disk, of radius 122 mm, is “xed. The inner disk, of radius
71 mm, rotates at 0.25 mm sŠ 1, thus shearing the foam.
The resulting velocity “eld decreases quickly with the dis-
tance to the inner disk. This experiment has stirred a de-
bate about the existence and cause of velocity localization:
for review, see for instance reference [8]. The experimental
measurements we present here complement those of refer-
ence [21]; they are largely model-independent and might
be used in the future to contribute to this debate.

2.4 Identi“cation with continuous elastic, plastic and
total strain rates

This section discusses an additional property of foams,
whether 2D or 3D: they are a unique material where the
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statistical measurements (Sect. 2.2) can be identi“ed with
usual continuous quantities.

2.4.1 A�ne ”ow and total strain rate

As discussed in the companion paper [14], if the ”ow of a
material is a�ne, then W measures the velocity gradient

W
a�ne
� � v . (8)

Figure 3 shows an example of our experimental tests
of equation (8). We have measured the detailed compo-
nents, including the rotational (asymmetric part), as well
as eigenvalues and axes of the symmetric part. All these
quantities are the same forW and � v , within a few per-
cents precision, with a correlation close to 1. The mea-
surements of W and � v have a comparable precision,
and su�er from similar imprecisions near the channel walls
and obstacle. Both have a small trace (ellipses are nearly
circular). Tests at smaller and larger scales, that is with
di�erent sizes of the representative volume element (RVE),
yielded similar results (data not shown).

This agreement is unexpectedly good, given that with
the dry foam chosen here the strain is large and its gra-
dient is strong. At large scale, movements of individual
objects within the same RVE can di�er considerably; but
even in this unfavorable case the a�ne assumption seems
to hold, as shown in Figure 3. The reason seems to be
that equation (8) is correct whenever M does not vary
signi“cantly within the chosen RVE [20]. Together, equa-
tions (7, 8) enable us to identify the rate of growth of
links, V , with the total strain rate, �� tot = ( � v + � v t )/ 2.

2.4.2 Elastic stress and strain

In a foam, the elastic energy is proportional to the bubble
surfaces, so that the elastic strain directly stems from bub-
ble deformation. It has been experimentally checked that
U (or at least its deviatoric part) actually determines the
(deviatoric) elastic stress: see references [17,21], to which
we refer for details of the measurement method. We check
it here too (Fig. 4), using our driest example (Fig. 1b) in
order to improve the measurement precision of the devia-
toric elastic stress.

This indicates that the internal strain U , which is a
state variable constructed from bubble deformations, mea-
sures well the reversible strain� el that gives rise to elastic
stresses, although the ”owing foam is clearly out of the
elastic regime. In what follows, we thus callU the •elastic
strainŽ.

Up to a prefactor, namely the foam•s shear modu-
lus, (Ud)2 represents the elastic energy stored (e.g. due
to shear): that is, the di�erence between the energy of the
current state and that of the local minimum. The latter
varies at each T1.

2.4.3 Plastic strain rate

Disordered foams, which we consider here, are models for
the plasticity of amorphous materials. Plastic events take
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Fig. 3. A�ne assumption: test of equation (8) on the foam
of Figure 1b. (a) Comparison of maps of W (top) and � v
(bottom): ellipses, symmetric part; grey levels, antisymmetric
part (bar: 5 .6 × 10Š 3 sŠ 1). (b) Quantitative comparison: top,
(WXX Š WY Y )/ 2 versus (� vXX Š � vY Y )/ 2, and the same for
all other components (superimposed): XX + Y Y, XY Š Y X ,
XY + Y X ; bottom, angle (in degrees) of ellipses plotted in (a).
Each point comes from one RVE of the image.
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Fig. 4. XY components of the elastic stress� (in arbitrary
units) versus XY components ofU . Each point comes from one
RVE of the image of Figure 1b. The slope of the cloud of points
is the foam•s 2D shear modulus; it is of order of the bubbles•
line tension � to diameter ratio. Data for the ( XX Š Y Y)/ 2
components are superimposed: they have the same slope.
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Fig. 5. Schematic impact of individual (discrete) rearrange-
ments on the stored elastic strain U, for a constant loading
rate �� . Rearrangements relax exponentially the strain over a
time � relax , with here ��� relax = 0 .02 � 1. In the present con-
tinuous model, rearrangements are coarse-grained. Reprinted
from reference [9].

the form of bubble rearrangements. When averaged over
time or space, the e�ect of topological rearrangements is
usually smooth, and the foam behaves as a continuous ma-
terial (Fig. 5). This contrasts with ordered foams, where
bubbles are arranged in a honeycomb lattice and topo-
logical rearrangements are highly correlated, which are
models for the plasticity of crystals based on dislocation
movement [23…25].

Each topological rearrangements is instantaneous (by
de“nition of a topological change) and imply a change
from a stable elastic branch to another. It is followed by
a relaxation over a “nite time � relax , determined by the
ratio of dissipation to driving elastic force. The rate of
T1•s is determined by the shear rate, which we keep here
slower than � Š 1

relax in what follows (for extension to higher
shear rates, see [10]). In that case, the foam has time to
relax towards a new local equilibrium state (Fig. 6), and
the total energy dissipated is determined by the di�er-
ence between the energy barrier and the new local energy
minimum. Thus the foam stays in this con“guration: the
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Fig. 6. Shear of a 2D ordered foam [22], di�erent liquid frac-
tion: 9.3% (close-packing, lowest amplitude curve), 5.5% (on-
set of a negative slope unstable branch), 3% and 1%. De-
creasing liquid leads to increasing maximum stress. The topo-
logical rearrangement occurs when the stress versus strain
curve becomes unstable (dot-dashed line) and induces an irre-
versible strain. Three 1% foams states are represented (circles
on curve). The stress � is here normalised using surface tension
� and bubble radius d.

transformation is plastic. It is possible to come back, with
hysteresis, to the state which preceded the T1: since it too
is a local energy minimum, the succession of a T1 and its
inverse T1 leads to exactly the same pattern [26,27].

Note that each relaxation following the T1 involves an
irreversible dissipation, which measures the plastic dissi-
pation rate (as seen in Fig. 6). Indeed, if the strain rather
than the stress is imposed, the stress-strain curve of a 2D
ordered foam with less that 5.5% of liquid has an unstable
branch. The dissipation power of the plastic ”ow is pro-
portional to the rate of T1•s, thus to the shear rate: the
stress is thus independent of the shear rate, which is char-
acteristic of solid friction (plastic contribution to stress,
see plateau of Fig. 5).

To summarize, a topological rearrangement is equiva-
lent to a plastic strain. This is speci“c to dry foams: as
discussed in the companion paper [14], this equivalence is
not general to all materials. The irreversibility is associ-
ated with the relaxation after a rearrangement.

When a rearrangement occurs, the total strain is not
changed locally. The elastic strain decreases by� � el =
Š� U T1 , and the plastic strain thus increases by� � pl =
� U T1 . Hence, the matrix P measures well the plastic
strain rate �� pl = � � pl /�t .

2.4.4 Complete identi“cation

The preceding sections suggest that, in dry foams, it
should be possible to achieve the complete identi“cation
between statistical measurements and continuous quanti-
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ties:

U
foams

� � el ,
V � �� tot ,
P � �� pl . (9)

The statistical measurements are linked by

V =
DU
Dt

+ P, (10)

with D the total corotational derivative [14]: DU / Dt =
� U /�t +( v � )U + � U Š U � . Equation (10) is the matrix
version of equation (1); here too, the total applied strain
rate is the sum of the internal elastic strain rate and the
irreversible plastic strain rate.

We conclude that the measurable quantities U , V
and P make the connection between the discrete pattern
and its continuous mechanical behaviour. In the following,
since we present experimental results, we stick to the sta-
tistical measurements of strains (l.h.s. of Eqs. (9)). They
can of course be replaced with the usual notations from
material science (r.h.s. of Eqs. (9)).

3 Model for foam plasticity

This section introduces a prediction of the plastic strain
rate and topological rearrangements in foams.

3.1 Plastic strain rate

The deviatoric elastic strain (shear, without dilation) is
de“ned as the traceless matrix

U d � U Š
1
2

(Tr U )I . (11)

Its amplitude is de“ned as

Ud �
�

U d : U d

2

� 1/ 2

, (12)

where we use the double contraction product, namely the
scalar product of matrices, A :B =

�
i,j A ij B ij . In a 2D

con“guration, Ud provides the absolute value of the eigen-
values of matrix U d. The matrix U d/U d is then a direc-
tional matrix that writes diag(1 , Š1) in the eigenvector
basis of elongation. For details of notations, see [14].

To generalize the scalar model, we need to specify not
only the amplitude of the plastic strain rate matrix P,
which we take linear in the strain rate V ; but also its
direction, which we assume is aligned with the current
deviatoric elastic strain U d. In other words, the plastic
evolution is directed along the pre-existent elastic strain
and occurs with a rate which is the projection of the total
strain rate onto the elastic strain. As will become apparent
below (Sect. 4.1), this amounts to a mean-“eld approxi-
mation.

Our main assumption is thus that P is determined by
the •projectionŽ of V on U d, de“ned (in analogy with
the projection of a vector on another) using the double-
contraction product:

V proj =
(V : U d)

2Ud
2 U d. (13)

We thus generalise equation (2) using a scalar plasticity
function, h, of the strain amplitude, Ud:

P = h(Ud)V proj , if V : U d � 0. (14)

Equation (14) applies for the case where the total
strain loads the internal strain (V : U d is positive). If V
is proportional to U d (same direction, same anisotropy),
this equation reduces toP = h(Ud)V , equivalent to the
scalar one, equation (2); moreover, ifUd has reached the
yield value (h = 1), then P = V .

On the opposite, if the applied strain rate V is in the
direction opposed to internal strain (V : U d is negative), it
contributes to unload it elastically. It thus does not induce
many rearrangements [20]. We neglect them by settingP
to zero

P = 0 , if V : U d < 0. (15)

Note also that equation (14) would reduce to the
classical Prandtl-Reuss model for a perfect plastic mate-
rial that yields, when the elastic strain reaches the value
UY [28], if the plasticity function was an Heaviside func-
tion, h (Ud) = H(Ud Š UY ), discontinuously jumping from
the value 0 whenUd < U Y to 1 when Ud � UY .

3.2 Rearrangement frequency

Each rearrangement modi“es the strain in its measure-
ment box. We consider here that the strain is concen-
trated within the reference area attributed to one link
A link = A/N link (the perturbation in a continuous elastic
space rapidly decays with the distance to the rearrange-
ment location, see model [13]). If we assume that each
plastic change has a constant amplitude� 0, we can write

� U T1 = � 0
U d

Ud
, (16)

where we assumed that rearrangements are aligned with
elasticity (following Eq. (14)). We have seen that the plas-
ticity rate matrix can be written

P = f � U T1 , (17)

wheref is the frequency of rearrangementsper link. When
considering averages in larger counting boxes, containing
N link links (approximately 3 times the number of bubbles
in the box [1]), equation (17) still holds and writes P =
f box � U box . Indeed the frequency in the counting box is
f box = N link f , and the impact of a T1 on a larger surface
is diluted to the value � U box = � U T1 /N link .
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Combining the plasticity equation (Eq. (14)) and the
amplitude of strain relaxation (Eq. (16)), we obtain the
frequency f of T1 events, per link:

if V : U d > 0, f =
h(Ud)
2� 0Ud

(V : U d) ,

if V : U d < 0, f = 0 . (18)

It depends on the positive eigenvalue �� of the elongation
rate, and on the relative angle 	 between the eigenvec-
tors of the elongation rate and strain. If cos(2	 ) < 0, the
frequency is zero; if cos(2	 ) > 0, the order of magnitude
of the frequency can be estimated:f 	 cos(2	 ) �� . This ex-
tends “ndings by [29]. It expresses that rearrangements are
frequent where the total strain rate is strong, and when
the elongation rate is parallel to the pre-existing strain
thus loading it through the yield surface.

4 Experimental tests

4.1 Rearrangements: orientation and frequency

This section uses data of Figure 1a.
Figure 7 con“rms the mean-“eld approximation of the

model (Eq. (14)), namely that disappearing and appearing
links are determined (in average) by the existing strain.
More precisely,P makes an angle of 0± 9� with M or U :
disappearing links � d are mainly in the elongation direc-
tion (Fig. 7, top). Their length is 1 .2± 0.1 times larger than
the average of existing links in that direction, 
 + =



2� 1,

where � 1 is M •s largest eigenvalue (Fig. 7, middle). Con-
versely, links � a appear in the contracted direction of M ,
with a length 1.1± 0.1 times the average of existing links,

 Š =



2� 2 (Fig. 7, bottom).

The jump in elastic strain is therefore oriented along
U . Its amplitude is approximately

� U T1 �
�


 2
d/
 2

+ 0
0 Š
 2

a /
 2
Š

�

�
�

1.3 ± 0.2 0
0 Š1.2 ± 0.2

�
, (19)

using � U T1 � � M × M Š 1/ 2, from the di�erentiation of
equation (5) [14]. We conclude from equation (16) that
each rearrangement changes the elastic strain per link by
a constant amount:

� 0 � 1.2 ± 0.2. (20)

Strain is decreased by slightly more than one aver-
age length in the elongation direction, and increased by
slightly more than one average length in the orthogonal
direction.

Rearrangement frequency is well predicted (Fig. 8) by
equation (18). The main parameter required, namelyUY ,
is directly read from measurements ofU: here UY = 0 .15,
which is reasonable for a foam with 4% liquid fraction.
Second, the shape of the elasto-plastic transition has been
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Fig. 7. Histograms of measurements in all regions of the foam
(Fig. 1a). Top: angle between topological events and elonga-
tion. Middle: length of disappearing links compared to average
length in elongation direction � + . Bottom: length of appearing
links compared to average length in compressed direction � Š .
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Fig. 8. Frequency of rearrangements: observed versus pre-
dicted. Each point corresponds to a RVE of the foam, that
is, one ellipse of Figure 12. Observations: frequencyf measured

of rearrangements (per link and second) measured in Figure 1a.
Predictions: f from equation (18), setting the yield function to
h = min(( U/U Y )2 , 1) and the yield UY = 0 .15, while � 0 = 1 .2
(Eq. (20)). Solid line: diagonal f measured = f .

chosen as a quadratich function, which is justi“ed in Sec-
tion 4.2.

The origin of the upstream/downstream asymmetry of
plasticity can now be qualitatively explained, by follow-
ing a bubble along its streamline (Fig. 9). The obstacle
imposes a succession of opposite elongation rates: span-
wise before the obstacle, and streamwise after it (see be-
low, Fig. 12). Before the obstacle, the elastic strain and
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Fig. 9. Foam ”ow. Top: superimposed images evidence the
streamlines (here from Fig. 1b). Bottom: measured velocity
“eld and streamlines. The thicker solid line highlights the
streamline analysed in Figure 10.

the elongation rate are aligned, and the foam is yielding.
After the obstacle, it takes some time until the elastic
strain fully relaxes, then increases again in the new direc-
tion of elongation, orthogonal to the initial one (Fig. 10).
Topological rearrangements are therefore concentrated in
a smaller region.

4.2 Maps

This section presents the spatial distribution of measure-
ments plotted as ellipse maps (matrix “elds), which simul-
taneously display: position, orientation, anisotropy and
frequency of rearrangements. Again, we predict plastic-
ity from the measured elastic strain and total strain rate,
using a yield strain UY directly read from the onset of
a plateau in the plasticity fraction h, without adjustable
parameter (see Fig. 11 for the di�erent measurements).
A smooth quadratic plasticity fraction h is chosen (as
observed from rheometric measurements [9]), to account
for possible plastic events below the yield. Thisdirect
prediction of P from h is robust: in fact, it is especially sig-
ni“cant near the yield strain, where h is close to 1 (what-
ever the choice ofh).

Conversely, theinverse estimate of h, from P, is nois-
ier. In fact, di�erences between various candidates for the
h function are more signi“cant far from the yield point,
where measurements are both smaller and with less statis-
tics. In practice, we suggest to estimate the amplitude of
the deviatoric part P d of plastic strain with the amplitude
Pd = ( P d : P d/ 2)1/ 2; and the amplitude of the deviatoric
part of the total strain rate with Vd = ( V d : V d/ 2)1/ 2.
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Fig. 10. Measurements along the streamline shown in Figure 9
bottom. Top: loading and unloading of elasticity, Ud . Bottom:
T1 frequency along streamline, as in Figure 8; solid line: ex-
perimental f measured ; dashed line: predicted f .
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Fig. 11. Yield strain versus liquid fractions for the di�erent
setups of Figure 1: � , (a); €, di�erent experiments of (b); � ,
(c); � , (d). Trend of data (b) can be qualitatively compared to
a quadratic law [30]: UY = C(� c Š � )2 , with � c corresponding
to the rigidity limit liquid fraction ( � 30% for setup (b) [14])
and C an empirical constant equal to 1.1.

If we assume that P and V are nearly parallel (which is
not really the case with obstacles), equation (14) can be
projected on the same axis: we obtain an estimate of the
plasticity fraction as h � Pd/V d.

4.2.1 Flow around an obstacle: wet foam

For a wet foam, upon ”owing around the obstacle
(Fig. 12), we observe that the amplitude of U increases
then decreases, whileV changes orientation. U ellipses
have a •capsuleŽ shape before the obstacle, with a nega-
tive compression larger than the positive expansion. This
is due to bubble compressibility: in this experiment bub-
bles can expand their height (in the water bath) and thus
retract their horizontal area [15].
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(a)

(b)

(c)

(d)

Fig. 12. Wet foam ”owing around an obstacle (Fig. 1a). Mea-
surements of U (a) and V (b) yield, through equation (14)
with quadratic plasticity function h, the theoretical prediction
of P (c), in good agreement with its measurement (d). Scale:
for U , bar = 1 (no unit); for V and P : bar = 1 s Š 1 .

The agreement between prediction (Fig. 12c) and mea-
surement (Fig. 12d) of P is very good. In particular, we
predict well the spatial distribution of T1 events: they
occur mostly just before the obstacle, and in a narrower
region after it. For horizontal positions just on the right
of the center of the obstacle, the ”ow tends to decrease
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Fig. 13. Estimate of h. Symbols: measurements from Figure 1a
of Pd /V d � h. We represented the average (circle) and standard
deviation (vertical error bar) after binning data along the hori-
zontal axis on equal interval sizes (horizontal error bar). Dash-
dots: h(Ud ) = min(( Ud /U Y )2 , 1), quadratic up to UY = 0 .15.

the existing strain (V : U d < 0): the predicted frequency
vanishes.

We also predict well the direction of rearrangements, as
well as their amplitude, represented by the direction of the
co�ee beans and their size, respectively. We do not observe
in experiment purely elastic areas and purely plastic areas
with a sharp transition line. This is why a discontinuous
plasticity function h would be unsuitable, and we use a
smooth one (Eq. (14)).

Conversely, statistics are just good enough that we can
extract h from measurements. (Fig. 13). We observe that
h increases, more or less like the proposed (U/U Y )2, up
to UY = 0 .15, then saturates. Interestingly, it plateaus
at a value � 0.6 ± 0.1 signi“cantly lower than 1. This is
probably because after the obstacleV unloads U , which
decreases before the foam enters the fully plastic regime.

4.2.2 Flow around an obstacle: dry foam

The same experiment with a dry foam (Fig. 1b) yields a
qualitatively similar behaviour for U , V and P (Fig. 14).
Quantitatively, however, the maximum value of Ud is here
0.45, which is a reasonable value for a dry foam [22]. The
spatial variation of U , V and P is restricted to a much
narrower range. Note that ellipses are more circular: foam
is much less compressible than the previous dry case.

This means that we measure larger values but on much
less points, resulting in poorer statistics. Still, the agree-
ment between prediction and measurements ofP is qual-
itatively correct. Extracting h from the data is also qual-
itative, with apparently a plateau as low as 0.4 (Fig. 15).

4.2.3 Flow through a constriction

When a foam is forced to ”ow through a constriction
(Fig. 1c), along any streamlineUd steadily increases. The
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(a)

(b)

(c)

(d)

Fig. 14. Dry foam ”owing around an obstacle (Fig. 1b). Same
caption as Figure 12, except that for V and P bar = 0 .063 sŠ 1 .
See similar “gures in the companion paper [14].

constriction is here so narrow, comparable to the square
root of a bubble area, that just at the constriction the con-
tinuous description (and thus our measurement method)
breaks down. The in”uence of the constriction is visible
far uphill: Ud is widely distributed, and we obtain good
statistics (Fig. 16).
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Fig. 15. Same “gure as Figure 13, but for the dry foam of
Figure 1b, UY = 0 .45.

(a) (b)

(c) (d)

Fig. 16. Foam ”owing through a constriction (Fig. 1c). Same
caption as Figure 12, except that for U bar = 0 .1, and for V
and P bar = 0 .25 sŠ 1 . See similar “gures in the companion
paper [14].

Conversely, V is more localized near the ori“ce, and
thus, as expected from equation (14), so isP. Plasticity is
indeed oriented by the elastic strain, the angle between the
main axis of P and of U d is 1± 5� . Concerning the plas-
ticity amplitude, we observe that Pd is much smaller than
Vd when the foam enters in the “eld of view:Pd/V d under-
goes a 5-fold increase until it reaches 1 at the constriction
(Fig. 17a), and Ud plateaus. We measureUY � 0.32; which
is reasonable for a foam with� 1% liquid fraction.

The direct estimate of the plasticity fraction as
h � Pd/V d is obtained with reasonably good statistics
(Fig. 17b). It plateaus close to 1, con“rming that the sat-
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Fig. 17. Constriction: analysis of Figure 1c. (a) Pd /V d (open
circles) and Ud (closed circles) versus the distance to the con-
striction. (b) Plasticity fraction h estimated as h � Pd /V d ver-
sus strain Ud (data from (a)): same “gure as Figures 13 and 15,
here with UY = 0 .32.

uration is reached. We obtain an extremely good quanti-
tative agreement of the predicted plasticiy with the mea-
surement (Fig. 16).

4.2.4 Couette ”ow

In a steady Couette ”ow (Fig. 18), as expectedU respects
the circular symmetry: it does not vary orthoradially. The
advantage is that we can improve the measurements by
averaging orthoradially. The drawback is that we have
very few independent measurements (here 6), along the
radial direction. U is signi“cantly di�erent from zero ev-
erywhere. Near the rotating (inner) disk, it means that
U saturates. Near the “xed (outer) disk, it is probably a
residual strain due to the foam preparation (there are not
enough T1•s to relax it). Ud is rather low (at most of order
of 0.1), which is consistent with the high liquid fraction.
All these “ndings con“rm those of reference [21].

As expected,V similarly does not vary orthoradially.
It decreases quickly with the distance to the “xed disk,
so that we have only two independent, non-zero measure-
ments. It is thus impossible to perform the same analysis
as in the above ”ows which truly vary with both space
coordinates.

(a) (b)

(c) (d)

Fig. 18. Foam sheared between concentric disks (Fig. 1d).
Same caption as Figure 12, except that for U bar = 0 .1, and
for V and P bar = 0 .25 sŠ 1 .

Still, we can predict P from equation (14): this agrees
quantitatively with the measurements. Concerning the ori-
entation of P, the angle between the main axis ofP
and of U is Š5 ± 3� , they are indeed aligned. Since the
”ow is steady, U is constant along a streamline, and we
thus expect P = V : this agrees qualitatively with the
measurements.

5 Conclusion

5.1 Summary

Using the formalism developed in the companion pa-
per [14], we measure in di�erent 2D foam ”ows the ma-
trices which quantify the elastic strain, the total strain
rate and the plastic rearrangements. We identify statisti-
cal measurements performed on the detailed structure of
bubbles, with large-scale quantities describing the foam as
a continuous material.

We then generalize to matrices a previous scalar
model [9], and base it on local measurements on individual
bubbles. We show that the plastic rearrangements arise
from a combination of both the elastic strain and the to-
tal strain rate. As shown by the maps, they cannot be
predicted from the elastic strain alone, nor from the total
strain rate alone.

For instance, in the wet obstacle ”ow, the spatial sym-
metry with respect to the obstacle is very di�erent in the
three maps. In the dry foam obstacle, the elastic strain ex-
tends very far, while the velocity gradient has a narrower
extension, but both are needed, and the total strain gives
the orientation. In the constriction the elastic strain ex-
tends so much that it is mainly the total strain rate which
determines where T1•s occur.
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In a “rst approximation, the plasticity is described
mainly by the behaviour near yielding. The yield strain
UY is the main relevant parameter. We determine it di-
rectly from image analysis and check that the obtained
values are reasonable. We then statistically predict the
position, orientation, anisotropy and frequency of topolog-
ical rearrangements in a ”owing foam, in good agreement
with various experiments.

In a second step, to re“ne the description and improve
the prediction, we introduce the proportion of plasticity,
to account for the gradual appearance of plasticity instead
of a sharp yield. It is a function h(Ud) (also called •yield
functionŽ) of the elastic strain, which interpolates between
0 (fully elastic) at small strain h(0) � 0, and 1 (fully plas-
tic) near yielding, h(UY ) � 1. We obtain here estimates
of h.

5.2 Discussion

The model presented in Section 3 succesfully predicts the
plasticity, and contributes to describe the foam as a con-
tinuous material. We now discuss its validity and some of
its limitations.

5.2.1 Material

The general approach which links individual and collec-
tive descriptions is applicable to other complex materials
(see companion paper [14]). The identi“cation between
statistical and continuous quantities is restricted to a�ne
”ows, which probably applies rather generally to foams
and other cellular materials; it also requires that the elas-
tic strain corresponds directly to individual objects, and
the plastic strain rate to topological rearrangements: this
is probably speci“c to dry foams and emulsions.

5.2.2 Shear rate

Foams coarsening, due to the di�usion of gas from one
bubble to the other, couples to foam rheology at slow time
scales [3]. Here, the present experiments are short enough
to neglect this e�ect.

On the other hand, at very high shear rate, the rhe-
ology couples to the bubble•s internal relaxation times,
which are much shorter [10]. In a material like a foam, at
such a high shear rate the bubbles• “lms and vertices do
not relax towards the local mechanical equilibrium. Bub-
bles distort and the foam eventually breaks; in fact, at
all velocities explored here, if the foam exists it means
that the shear rate is slower than the internal relaxation
times [20].

5.2.3 Dimension

Our formalism is written using matrices, so that it indif-
ferently applies to 2D or 3D systems. In principle it could
be tested in truly 2D foams (for instance in numerical

simulations) as well as in truly 3D foams (detailed mea-
surements are in progress). Here, for simplicity, we test it
on bubble monolayers (quasi-2D foams) which ”ow hori-
zontally (true 2D velocity “eld).

The friction due to plates of glass is an external force
acting on bubbles, not to be confused with viscous stresses
which are internal to the foam. It likely plays a role in the
values of the quantities we measure above, but does not
a�ect the relations between these quantities; that is, the
equations we write are insensitive to this friction. This
is in particular the case for the repartition of the total
strain rate between its elastic and plastic contributions
(Eq. (14)).

5.2.4 Disorder

We have assumed here that the foam is amorphous; that is,
RVEs are homogeneous. This excludes foams with: crys-
talline order; avalanches of T1•s; localization of the shear,
and shear banding; or one dimension comparable to a bub-
ble diameter.

Here we measure the e�ects of the functionh, and thus
indirectly trace back to its approximate expression. This
is not precise, since apparently, the exact shape ofh does
not a�ect much the predictions. This implies that, recip-
rocally, once h is known, predictions based on it are very
robust. We are thus currently trying to measure directly
the function h for various foams, with di�erent liquid frac-
tions and disorders.

5.3 Perspectives: constitutive equation

5.3.1 Closing the set of equations

In principle we could study the ”uctuations in time and
space of the three matrices we measure:U , P, V . How-
ever, we observe experimentally that their averages vary
smoothly with space. As a “rst step, we want to use these
average smooth “elds to obtain a continuous description
of 2D foam ”ows. For that purpose, we need a closed set
of equations to relate these three matrices.

First, the kinematic equation (10) means that the total
strain rate is shared between elastic and plastic contribu-
tions. It is equivalent to rewrite it as

DU
Dt

= V Š P. (21)

In other words, the elastic strain is loaded by the total
applied strain rate, that is, the velocity gradient; this pro-
cess is limited by the plastic strain rate, which saturates
the elastic strain.

Second, the plasticity equation (14) describes how the
total strain rate is shared between change of elastic strain
and plastic strain rate. It involves the fraction of plasticity,
h. Equation (14) can be combined with equation (15) into
a single equation, using the Heaviside function

P = h(Ud) H (V :U d)
(V :U d) U d

2Ud
2 . (22)
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Third, V is directly related to the symmetrised gradi-
ent of the velocity “eld. In fact, combining equations (8)
and (7) yields

V
a�ne
�

� v + � v t

2
. (23)

Fourth, the velocity “eld is determined by the funda-
mental equation of dynamics, that is, momentum conser-
vation (Navier-Stokes):

�
�

� v
�t

+ ( v · 
 )v
�

= div · � + fext , (24)

where � is the foam density, � the stress tensor, andfext
the external forces (such as the friction on the glass plates)
not included in the stress.

Fifth, we now need the constitutive equation itself.
That is, a dynamical equation which determines the elastic
and viscous contributions to the stress, from the current
elastic strain and strain rate. We suggest to generalize
equation (4), now using matrices

� = 2GU d + K Tr( U )I + 2 � V . (25)

We have added here a compression modulusK ; in prac-
tice, for foams, it is much larger than the shear modulus.
We write the material-dependent parameters as scalar,
which is correct for an isotropic disordered foam; in an
anisotropic material they would be rank-four tensors. The
drawback of the external friction on plates (mentioned in
Sect. 5.2.3) is that it prevents us from measuring locally
the viscous contribution to the stress in equation (25). We
thus have assumed that its viscosity is linear,i.e. � con-
stant. It is possible in principle that � depends onU d or
V , thus introducing some non-linearities.

In conclusion, this fully closed set of equations can be
solved from the knowledge of two “eld variables:v for
transport and U for internal strain.

5.3.2 Uni“ed description of elastic, plastic and viscous
behaviours

Together, equations (21…25) provide a fully closed sys-
tem. It is a complete continuous constitutive equation for
foams. It treats with an equal importance the elastic, plas-
tic and viscous contributions in any of the three regimes:
elasticity, plasticity and ”ow. It admits as limits the clas-
sical equations of elasticity or hydrodynamics, as well as
elasto-plasticity, visco-elasticity and visco-plasticity. Ex-
tension to higher shear rates [10] is challenging, but not
impossible in principle.

It should be enough to perform complete, testable pre-
dictions of U , P, V , from the material•s properties and
the boundary conditions. This is much stronger than Sec-
tions 3 and 4, which predict P from known U and V . Such
analytical predictions, and the corresponding experimen-
tal tests, are in progress. They are outside of the scope
of the present paper; still, we can make a few remarks
regarding the foam dynamical properties.

10
�f4

10
�f3

10
�f2

10
�f1

10
0

10
1

10
1

10
2

10
3

�J

G
’, 

G
’’ 

(P
a)

 

 

G’
G’’

Fig. 19. Storage and loss moduli versus strain amplitude for
a monodisperse emulsion. Symbols: experimentalG� (squares)
and G�� (triangles) in a close-packed emulsion (Fig. 1 of
Ref. [31]). Lines: model calculated with the complete set of
equations (21…25). The method is the same as in reference [9];
the correspondence between scalars and matrices is obtained by
replacing (�, U, �� ) with ( � xy , 2Uxy , 2Vxy ). The factors 2 come
from the tensorial generalization (Eq. (25)) of the scalar equa-
tion (Eq. (4)); this is why the yield strain is half of that used
for the scalar case (Fig. 9 of Ref. [9]). The parameters are
directly obtained from the experimental data: shear modu-
lus G = 1 .7 · 103 Pa, yield strain UY = 0 .0223, and viscosity
	 = 30 Pa s. The yield function used here is h = ( U/U Y )2 .

In oscillatory regime, the system of equations (21…25)
predicts the storage and loss moduliG� , G�� (Fig. 19).
Since these are scalar quantities, this is very similar to
predictions based on equation (4) [9].

In stationary regime, while we cannot yet measure lo-
cally the viscous contributions to the stress, we can indi-
rectly measure its consequences at the global level. In fact,
the force acting on a circular obstacle (Fig. 1a) results
from the integral of the stress over the obstacle boundary:
experimentally, it increases linearly with the foam veloc-
ity, with a non-zero intercept [15]. This agrees with equa-
tion (25). A consequence is that, in a stationary regime
where the elastic contribution to stress is constant, the
foam seems to behave as a visco-plastic (Bingham) ”uid.

In any transient regime, however, the full visco-elasto-
plastic nature of the foam has to be taken into account.
The internal variable U , often overlooked, thus plays a
role as important as that of P or V .

We warmly thank B. Dollet, M. Asipauskas, and G. Debr´ egeas
for kindly providing published and unpublished raw data.
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